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1. INTRODUCTION

1.1. Statement of Problems

The principal objects of the investigation reported here are,

first, to study qualitative probability relations on Boolean algebras,

and secondly, to describe applications in the theories of probability

logic information, automata, and probabilistic measurement.

Several authors (for example, B. de Finetti, B. O. Koopman,

L. J. Savage, D. Scott, P. Suppes) have posed the following specific

problems:

(P
1
) Given a Boolean algebra gt and a binary relation A on a
under what conditions on 74 does there exist a probability

measure P on satisfying

A B < P(A) < P(B)

for all A, B e ?

(P
2
) Given a Boolean algebra nr and a binary relation - on a

under what conditions on does there exist a probability

measure P on e:ir and a real number 0 < < 1 satisfying

A >- B P(A) > P(B) + E.

for all A, B e ?



(13
3

)

(PO

Given a Boolean algebra et and a quaternary relation =24

on et 1 under what conditions on does there exist a con-

ditional probability measure P on Kt satisfying

A/B C/D P(A/B) < P (C/D)

for all Al B, C, D e et for which P(B) P(D) > 0 ?

Given a Boolean algebra and a quaternary relation

on e;e, under what conditions on >- does there exist a

conditional probability measure P on a and a real

number 0 < E < 1 satisfying

A/B >- C/D P(A/B) > P(C/D) + 6

for all A, B, CI D e tt for which P(B) P(D) > 0 ?

Chapter 2 answers problems (P2), (P3), and OW. The axioms

for entropy originally given by Shannon in 1948 have been replaced

several times subsequently by weaker conditions. In each case the

axiomatization of the basic information-theoretic notions is pre-

sented as a collection of functional equations. In contrast, a

new approach is proposed here; an approach which is an application

of the techniques developed in the study of probabilistic relational

structures. We shall give axiomatic definitions of the concepts

of qualitative information and qualitative entropy structure; and

we shall study some of their basic measurement-theoretic properties.

For this purpose we also set down axiomatization for the qualitative

Empabilistic independence relations on both the algebra of events

and the algebra of experiments.
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Many methodologists have in recent years been leaning towards

the view that as long as there is no satisfactory theory of the

probability theory of first-order formulas, the rather delicate

questions of inductive logic, confirmation theory and scientific

method are not likely to be satisfactorily answered. Here it is

argued that, if there is any truth in this view, a purely quali-

tative treatment of the probabilities of quantified formulas is a

more promising line of attack than the quantitative theories

propagated by Carnap and others.

In the mathematical theory of probability conditional

probabilities are conditional probabilities of events of the basic

algebra; in no sense are they probabilities of conditional events.

But it seems an interesting problem whether they could be con-

structed in this second way. A definition of an algebra of such

conditional events iS given here which conforms to the intuitive

concepts used by probability. Once we have a qualitative theory

of probability, it is natural to ask if we can treat qualitatively

all problems formulated in terms of a probability space. The al-

gebraic character of probabilistic automata makes this a promising

field of application, and in this work definitions of qualitative

probabilistic automata are suggested. As further applications

several empirical structures relevant in physics and social sciences

are studied.

The investigation has produced many new problems in this field,

and the main ones are listed in the conclusion.

3



1.2. Previous Results

There are several ways of introducing the concept of proba-

bility. In all of them, throughout the long history of the subject,

the intention has been to answer the following two basic questions:

(Q
1
) What are the entities, called events, which are supposed to

be probable?

(Q
2
) What kind of function or relation, called probability, is

attributed to the events?

The main answers are usually referred to as measure-theoretical

(H. Steinhaus [1], A. N. Kolmogorov [23]), limiting Lauensi

(R. von Mises [3], A. Wald [4]) subjectivist (B. de Finetti [5],

L. J. Savage [6]), logical (R. Carnap [7], H. Jeffreys [8]) and

finally, methodological (R. B. Braithwaite [9]). Motivations for

some of these answers to questions (Q1) and (Q
2
) are hidden in the

complex problem of rationality.

The answer to question (Q1) is algebraic: the set of events,

structurally speaking, forms at 1east a lattice, and almost always

a Boolean algebra, or, equivalently, a field of sets. There is

less agreement on whether the events themselves should be inter-

preted as sets, statements, or perhaps sets of statements. But

there is no obvious reason why all these should not be possible.

Question (Q
2
) causes real trouble. In fact, this question

is just what the foundations of probability are all about.
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In this work we shall restrict ourselves to the study of the

relationships between the formal structures of the measure-theoretical

and subjectivist approaches.

De Finetti's subjectivist probability theory is written in terms

of a binary relation A defined on some Boolean algebra a
of events. The intended interpretation of called the quali-

tative 2robability relation, is as follows:

If A, B E then A 4 B means that the event A

is (a priori) not more probable than the event B.

It is useful to define A -1 B as -1 B Al and A B

as A 4 B & B

The celebrated axioms of de Finetti's probability theory impose

certain constraints on the qualitative probability relation, in order

to guarantee the existence of a numerical probability measure on et

in the standard sense; this problem was called (P1) in Section 1.1.

It turned out that de Finetti's conditions were necessary, but not

sufficient; (P1) was finally solved for the finite case by C. H. Kraft,

J. W. Pratt, and A. Seidenberg in 1959 [10]. A more simple general

solution was found by Scott in 1964 (D. Scott [11]). Scott has also

dbtained a solution for infinite Boolean algebras (D. Scott [12]).

The intended interpretation of the relation in problem (P2)

is as follows:

A B the event A is definitely more probable

than event B (A, B E

Obviously - is intended to be a semiordering relation; we shall

call it a semiordered qualitative probability relation.

5



Problem (P
2
) was raised by Suppes, and for finite Boolean

algebras was first considered by J. H. Stelzer in his doctoral

dissertation (J. H. Stelzer [131), where a partial solution was

given. The solution is deficient in that the necessary and suffi-

cient conditions are not stated purely in terms of the qualitative

relation - (see Stelzer [13], Theorem 3.14, p. 68); moreover,

the proof of the main theorem (ibid., Theorem 3.8, p. 52) is invalid.

B. 0. Koopman [14], A. Shimony [15], and more recently P. Suppes

[16] and R. D. Luce, investigated a more complicated case, consider-

ing conditional events. Well known is Koopman's relatively strong

and complicated system of axioms for the binary relation 4 which

is interpreted as follows:

A/B 4 q/D the event Al given event B is not

more probable than the event CI given event D, where ,

B, C,

For criticism, applications to confirmation theory, and a

further review of this problem, we refer to Shimony [15]. We should

perhaps mention here that Koopman's approach has the following

defects. It contains axioms like A/B 4 C/D .(Bc A D c C),

so that the qualitative probability relation imposes certain Boolean

relations on the events; This is implausible if -4 is not connected,

that is,

A/B 4 c/D v c/D A/B

which for some reason is the only case Koopman is prepared to consider.

6



However, one of his axioms pretty well amounts to postulating

the existence of equi-probable partitions of arbitrary events, which

is impossible in non-trivial finite cases.

By far the best system of axioms known to the author for the

relation 4 the qualitative conditional probability relation,

was given by Suppes [16]. Unfortunately, his axioms are necessary,

but not sufficient. This is obvious, since they are first-order

axioms; and even in the case of (P
1
) a second-order axiom is needed.

Besides that, without sufficient conditions we have no way of repre-

senting one probability structure by another.

Problem (P ) was first discussed in Suppes [16] (in connection

with the problems of causality), where necessary conditions are

given for the relation >m- the semiordered qualitative conditional

probability relation. The intended interpretation is obvious:

A/B C/D means that event A given event B is definitely more

probable than event C given event D.

As far as the author knows, no solutions to the problems (P2),

(P
3
)

1

and (P ) have yet been given.

We would like to emphasize that we shall primarily be inter-

ested in the cases where the Boolean algebra et is finite. For

atomless Boolean algebras, for instance, it is quite easily shown

that, under certain rather natural conditions on 4 5 there is

only one probability measure compatible with 4 in the sense of

problem (P1). Such a result for e-algebras was given by C. Villegas

[17] as a generalization of certain investigations of L. J. Savage.

7



In probability theory, or rather in its foundations, there

has long been a trend towards identifying events with formulas of

certain first-order formalized languages. Among principal pro-

ponents of this idea we can certainly count J. M. Keynes, H. Jeffreys,

H. Reichenbach, R. Carnap, and J. Iukasiewicz.

It is of course formally possible to ascribe probability to

formulas, since, under rather simple conditions, they form a Boolean

algebra. Yet a perfect solution to this problem for (quantified)

formulas is not as simple as this makes it sound.

For example, if we investigate the theory of linear ordering

structures, 27t = < MI < > 1 we can ask for the probability

of the formula x < y for x, y e M. If we say, for instance,

that P(x < y) = 1/2, then this should mean in the frequency

interpretation that by drawing in a given way the elements x, y

from M, we obtain pairs which in one half of the cases will satisfy

the formula x < y. But, although P(x < y) may equal 1/2,

nevertheless P( N/(x < y)) can hardly be anything but 0;x y

for this universal sentence is false in any non-trivial ordered

set. How about the probability of 3 (x < y) ? It depends,
x y

of course, on the structure 22K in question. If 7/24 is a

suitable structure, then the formula will be true or false in it,

and hence will have probability 1 or 0.

A theory that can only attribute probabilities of 0 or 1 to

sentences is inadequate for almost all applications. But alterna-

tive approaches may lead to more satisfactory probability assignments.

One way is to assume that we are given a set of possible worlds

8
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from which one world can be chosen at random. In this world we

perform another random drawing, this time of elements of the world.

Then the probability of a formula is equal to the probability of

its being satisfied by the double drawing. More technically, we

first draw a model .27r in accordance wdth a given probability

measure V on the family gl of all models under consideration;

and then from )-

ure p.m, given in

again in accordance with a probability meas-

we draw a set of elements.

Every formula 0 has a probability p., (0) in the selected

model i;Cfr Keeping 0 constant, and allowing the model We

to vary, we obtain a random variable 11271/(0), for which we can

compute the expected value EE: [19x(o) with respect to the prob-

ability measure V defined on the family r1 Hence, the

probability of the formula 0 is given by

p(0) = 11197,r(M[0] ) dv,

ti

m[0] . o is true in Wr under valuation v) .

where

In the case of conditional probabilities, the conditional

expectation would do the job. These ideas are due to J. Lro [18].

Gaifman [19] also developed a theory of probabilities on

formulas of arbitrary first-order languages, and proved that a

rather natural way of extending to quantified formulas a probability

measure defined on molecular formulas was in fact unique. Scott

and Krauss [20] then generalized Gaifman's method to infinitary

languages. Ryll-Nardzewski realized that assigning probabilities

to formulas is just a special case of the well-known method of

assigning values in complete Boolean algebras.

9



It should be pointed out that, whatever its other merits,

probability logic by no means exhausts the problems in probability

theory. On the contrary, nearly all the methods and results of

the mathematical theory, especially those involving random variables,

expectations, and limits, far outstrip probability logic. Never-

theless, as mentioned dbove, there are many interesting results,

several of them peculiar to this field.

The author's aim will be to survey these developments from the

point of view of qualitative probability theory, and to apply them

to probabilistic measurement theory.

Automata theory, as a part of abstract algebra, is a well-

developed discipline, whereas probabilistic automata theory is

still in a more or less primitive state. The most important work

on this problem is due to M. O. Rabin and D. Scott [21] and

P. H. Starke [22]; and qualitative versions of some of their def-

initions will be given in Chapter 4.

1.3. Contribution of this Research

Most of the contributions have already been described; here

they are briefly summarized.

The central mathematical results are the solutions of (P2),

(P3), and (P4).

The author proposes a new interpretation of the conditional

event A/B. Systematic axiomatic development of conditional prob-

ability theory has been done by A. Renyi [231 24] and A. CsLza:fr [25].

10



In the present author's opinion, the answer to (Q2) for the con-

ditional case cannot be satisfactorily answered if question (Q1)

for conditional events is not already answered.

Using the proof technique of problems (P2) - (P4) the author

succeeded in Obtaining several representation theorems for informa-

tion and entropy structures. In connection with these structures

considerable attention has been devoted to the qualitative inde-

pendence relations on events and on experiments.

In the final chapter certain results of probability logic are

handled anew by qualitative methods. Qualitative probabilistic

notions are also applied to probabilistic automata theory and

probabilistic measurement structures.

1.4. Methodological Remarks

One of the more fruitful ways of analyzing the mathematical

structure of any concept is what we here call the representation

method.

This method consists of determining the entire family of

homomorphisms or isomorphisms from the analyzed structure into

a suitable well-known concrete mathematical structure. The work

is usually done in two steps: first, the existence of at least

one homomorphism is proved; secondly, one finds a set or group of

transformations up to which the given homomorphism is exactly

specified. The unknown and analyzed structure is then represented

by a better known and more familiar structure, so that eventually,

the unknown problem can be reduced to one perhaps already solved.

11



Another advantage of this method is that it handles problems

of empirical "meaning" and content in an extensional way. For it

is a rather trivial fact that any mathematical approach to such a

problem will give the answer at most up to isomorphism. Hence all

meaning problems are extramathematical questions. For example,

interpretation of the concept of probability is beyond the scope

of the Kolmogorov axiama.

Yet, without permanently flying off on a tangent, we would

like to indicate by an example (anyway needed in the sequel) how

by using the idea of representation of one structure by another

one can handle the "meaning" problem inside mathematics.

The next two chapters will deal with certain mathematical

structures. The problems these structures pose are too difficult

to answer immediately, and we shall therefore translate the problem

into geometric language by means of the representation of relations

by cones in a vector space. From this geometric language we trans-

late again into functional language, by means of the representation

of cones by positive functionals. Here the problem is solved, and

we translate the result back into the original language of relations.

This is one of the most efficient ways of thinking in mathematics.

It should be noted, however, that the translation is not always re-

versible. The representing structure may keep only one aspect of

the original structure, but this has the advantage that the problem

may be stripped of inessential features, and replaced by a familiar

type of prdblem, hopefully easier to solve. Of course, essential

features may be lost. In spite of this, the method of sequential

12



representation has proved its worth in a great variety of successful

applications.

Take as a concrete example the relational structure of the

qualitative probability < f?'r, > which will be discussed

extensively in Chapter 2; any empirical content assigned to the

probability structure < a A > is carried through the chain

of homomorphisms: relational entity ,'-/N.geometric entity

functional entity, to the probability measure P on a The

measure P may thus acquire empirical content on the basis of the

structure < , > which we assume already to have empirical

content via other structures or directly, by stipulation.

In general, the empirical meaning or content of an abstract,

or so-called theoretical structure (model) is given through a more

or less complicated tree or lattice of structures together with

their mutual homomorphisms (satisfying certain conditions), where

some of them, the initial, concrete, or so-called observational

ones, are endowed with empirical meanings by postulates.

Note that the homomorphism is here always a special function.

For example, in the case of probability, P satisfies not only the

homomorphism condition (which is relatively simple), but also the

axioms for the probability measure. Thus the axioms for the given

structure are essentially involved in the existence of the homo-

morphism. In this respect, the representation method goes far

beyond the ordinary homomorphism technique between similar structures,

or the theory of elementarily equivalent models.

13



The "meaning" of a given concept can be expressed extensionally

by the lattice of possible representation structures connected mu-

tually by homomorphisms (with additional properties) and representing

always one particular aspect of the concept.

We do not intend to go into this rather intricate philosophical

subject here. The only point of this discussion was to emphasize

the methodological importance of our approach to concepts like

qualitative probability, information and entropy.

2. QUALITATIVE PROBABILITY STRUCTURES

2.1. Algebra of Events

We start with some prerequisites for answering the question (Q1)

in Section 1.1. Probability theory studies the mathematical proper-

r.,
ties of the structure < Q, >, where is a Boolean algebra

and Q is a probability measure on or the structure

= < , P >, where Q is a nonempty set of sample

points, is a field of subsets of Q , called the field of

events, and P is a probability measure on .

These two structures, <:)6, Q > and A are closely related

by the Stone's Representation Theorem, which says that every Boolean

algebra oFtY is isomorphic to a field of sets tts that is,

Those authors who work with the structure <...4 Q > do so

largely because no commitment is made on the character of the elements

of a Boolean algebra (it does not really matter whether they are

sets or propositions or something else); a further advantage is that

14.



one can treat the prcbability as a strictly positive measurey and

forget about the events of measure zero, which have no probabilistic

meaning anyway. On the other hand, the concept of a random variable

can hardly be defined in this structure in a direct way. So for

applications the second structure, GA , is more convenient. An

interesting attempt to reduce the notion of a random variable to

that of a u-homomorphism of a field of Borel sets of real numbers

into a Boolean u-algebra was made by R. Sikorski [26]. Though this

succeeds, nothing more general is gained by it, as thus it really

matters little which structure we take as our primary object of

study.

There are good reasons to keep both structures in mind; one

is that there is a probabilistic interpretation of the Stone iso-

morphism between the Boolean algebras and

In particular, if we start with the model 1 and if

as above, then (see Halmos [271) a
s

is the field

of closed-and-open (clopen) sets of a zero-dimensional (or totally

disconnected) compact Hansdorff space Q which is associated with

the family of all prime ideals of aCi'l and therefore also ultra-

filters of ki"

Without loss of generality, we can think of Qs as the set

of ultrafilters of Ar . On Q we then can define random variables

in the standard way, so that from <06.-1 Q > we can get < Qs

by adopting the measure Q into P by isomorphism. The converse

should be obvious.

15



By analogy with mathematical logic, where the collection of

all formulas of a formalized first-order language is, roughly speaking,

identified with a Boolean algebra, a theory is identified with a

filter, a complete theory with an ultrafilter, and so on, we shall

provide similar, probabilistic identifications.

For this purpose let A be a standard probability space as

described above.

In current textbooks of probability theory it is customary

to consider the notion of the occurrence of an event as a monadic

primitive predicate 8.

If 8A means that event A occurs, then it is rather trivial

to check that the following formulas are valid for all A, B E :

(i) ec,

(ii) A c B & CA OB

(iii) GA & OB =40o- 8A n B

(iv) BA V ca

Set-theoretically this means that the set of all events occurring

at a given trial forms an ultrafilter: V = fA: 8A & A E )

Naturally A = 7:: A E ) is a maximal ideal, so that the

set of events which do not occur at a given trial forms a maximal

(or prime) ideal: - ( A: -1 8A & A e te 3 But then

= u V ; that is to say, each trial (or experiment)

decomposes the algebra of events into two disjoint structures

and V .

If we call the outcome of a trial that element w of ft which

is the true result of the trial, then the principal ultrafilter

16



is generated by the singleton (co3 so that we should write

V( (cp
instead of 17 Similarly, the prime ideal A is

generated by --(c7 1 so that we shall write A.(71;1) instead of A
Therefore, any trial can be viewed as an ordered couple

< N7((c0), 2_S((03) > 1 where cp is the outcome of the trial.

Summarizing, we conclude that:

N7(((n)) = the set of those events which occur at the outcome cp

of the given trial.

L(71-0 = the set of those events which do not occur at the

outcome cp of the given trial.

Let 77(A) be the filter generated by A; then since

V (A) = n
(DEA

77 (A) = the set of those events which occur in all outcomes acA.

Similarly, since L(A) =

(DEA

A(A) = the set of those events which do not occur in any of

the outcomes aEA.

Especially,

V(P) = (CO and hence

the only event which occurs at all possible outcomes is P 1 and

the only event which fails to occur at any outcome is 0

The set of all principal ideals

isomorphic to tt :0Y =

opeartions as follows:

(A(A): A Ea 3 is

if we define in the Boolean

17



tl(A) + Q(B) = L(A u B) 1

A(A) 2,.(B) = n B) 1

Ll(A) = AGTO

Using the analytic properties of the sequences of ultrafilters,

w-e can give a rigorous definition of the frequency-interpretation

of probability.

The isomorphism T I constructed by Stone, has also a proba-

bilistic interpretation. If A eck; then T(A) = :A7&7 Qs) I

where, as pointed out before, Qs is the set of all ultrafilters

of AY'. Hence, T(A) is nothing else but the set of all experiments

(trials) in which A occurs. Obviously p(Q) = Qs and cp(0) = A.

Having this interpretation in mind, we shall freely use in the

sequel both the structures <4, Q,> and A = <ci, m, P > .

Next we shall characterize set-theoretically the notion of a

ccnditional event. Remember that in probability theory one speaks

only about the conditional probability of an event (PB(A)) and such

a thing as the prcbability of a conditional event (P(A/B)) does

not exist, since the entity, conditional event, is not defined.

On the other hand, applied probability is full of interpretations

of conditional probabilities which encourage us to believe in the

existence of conditional events as independent entities.

The present study needs conditional events for several purposes;

rather than postulate their existence, we honestly set about giving

them a satisfactory set-theoretic definition.

18



niom the one-one correspondence between

we dbtain an isomorphism

the ultrafilters N7 (Um)), UES/.

Using the isomorphism between the lattice of ideals of a

and the lattice of congruence relations on a we can introduce

the following equivalence relation on a

where

filters and idealsgr

the atoms of 1j are

A = B mod L1 A tJ B EA (A, B tZ );*)

(A : A :,-_-95&Aa).

By duality, we get the congruence relation also for filters:

In particular,

A E B mod V A44BEV (A, B

Vr. (A :AEQ&AE: a ).

A = B mod 77(c) 4=c-4 A E B mod A (a) 474> AC = BC.

The probabilistic interpretation of the congruence relation E is

the following:

A = B mod N7(b1))) 4=4 the events A and B are indistinguishable,

given the outcome a). More generally, A = B mod V(C) #-14. the events A

and B are indistinguishable given all the outcomes in C; that is,

eA 8B,

We can

the algebra

given wEC.

introduce this indistinguishability relation E into

of events et by constructing quotient Boolean algebras

or

The reader will notice that

/ct7c. (7) = tt/6,

**

A U B denotes symmetric difference,

A*-0B denotes AB U AB.

19
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Therefore we shall rule out this pathological Boolean algebra

by putting A 0.

On the other hand, the ultrafilters V ((.0) and maximal

ideals 6,(77) generate two-element quotient Boolean algebras:

[01 IL ) 1tz,c(wT) where I corresponds to

V( ((D)), and 4) to L([i.137); that is, [E21:4___ = N7(((p)) and

[Oir, = (70-).
S.

We have given plenty of examples that show that it does not

matter whether we consider ideals or filters. Filters are more

convenient for conventional thinkers; we think in terms of occurred

events, rather than the non-occurred ones. Frcm now on, therefore,

we shall work only in terms of filters.

If we put ad/A = V (A) (A 0), then et/A can be

interpreted as the Boolean algebra of conditional events, condi-

tionalized by event A. Hence for any B E a B/A is a con-

ditional event, equal to the class of events, indistinguishable from

event B, given the outcomes in A.

By considering iti/A (A 0) we restrict the set of possible

outcomes to the set A. Naturally, a/E2 a 1 so that condi-

tionalization by Q is trivial. The conditional event B/A takes

care also of the fact that the probability of the event B depends only

on the intersection of B and A. Thus, if B/A = C/A, then AB = AC,

14

which is Obviously true. If Bnnr = fBnA:AEtt), for

B E a then it is easy to check that the following isomorphisms

are valid:

20



A(B) rt/A(E) a B n t .f.= a/s7(B). Hence, the study of

MB is the study of the same probability structure as before,

but with the set of possible outcomes restricted.

Now naturally, in order to define a suitable measure P* in

017B, given the probability space A we have to realize that

the conditional event A/B is a sure event if and only if it always

occurs) that isl if A E V(B). Moreover, since P*(A/B) = P*(C/B)

if A/B = C/B, we must have P*(A/B) = P*(C/B) if P(AB) = P(CB).

Due to the fact, pointed out before) that P*(S1/B) = P*(A/B) = 1,

PCA n
if A Ev(B), we are bound to accept P*(A/B) as simply

B)

P(B)

(P(B) > 0).

To sum up, if we are given a probability space A ) then any

restriction of the set of possible outcomes leads to conditionalization

and therefore to an appropriate conditional measure.

It is clear how to interpret the following Boolean operations

in the set of conditional events et/B:

A/B + C/B = A U C/B 1

A/B C/B = A n c/B 1

vr3 . 7/B .

Similarly, the meaning of the identities A/B = AB/B, AB/BC = A/BC

should be clear enough.

The reader may wonder where the multiplicative law for conditional

probabilities is hidden. It can be checked that

a/B n c al ( 164/c)/B/c , (2.1)

which means that we can assign isomorphically A/C if B/C = AB/C B/C

21



to A/B n C. We can also check that the measure in ( 6PC)/B/C

should be (once we are given the measure P* in

and that this measure is just the same as P**(A/B n C) in

n C; hence

P*(A/B n c) p*(B/c) = 1)*(A n Wc) (2.2)

if the appropriate algebraic existence conditions are satisfied.

We proceed analogously as in the case of P*.

Note that (2.1) together with (2.2) state a simple fact, namely,

that iterated restriction of the domain of possible outcomes Q

by B, and then C, amounts to the simultaneous restriction of Q by

B and C; that is, its restriction by B n C. (2.2) is the most

important relation between two conditional events conditionalized

differently. To take the set (A/B : A, B E te, B 0) and look

for some structure in it is not reasonable; for what can we expect

to get in the set U ft/A which is not even a lattice? To take

/Lett

the direct sum ED rtyA is much more reasonable. We shall

AEU'
reserve a place for discussion of this algebraic construction in

Section 2.6 on qualitative conditional probabilities. Our main

concern in this section was to give set-theoretic definitions

of the notions of occurrence, trial, and conditional event, and

to explain the main relationships between probability measures on

Boolean algebras and fields of events. An interesting notion of

conditional probability is presented in H. P. Evans and S. C. Kleene

[28]; on the other hand, a radical attempt to uncover some structure

in the set of conditional entities can be found in A. H. Copeland [29].
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2.2. Basic Facts about Qualitative Probability Structures

In this section we discuss the results of Scott [11, 12] con-

cerning the problem (P1). The general method applied here goes back

to a theorem of Mazur and Orlicz [30] (see p. 174, Theorem 2.41).

This theorem is a simple generalization of the well-known Hahn-Banach

theorem on the extention of linear functionals in normed linear

spaces. Mazur and Orlices Theorem gives in rather good terms a

necessary and sufficient condition for the solvability of a system

of linear inequalities. As an application one could hope to solve

problems related to ours, provided that they involve showing the

existence of a linear functional on a given set which would homo-

morphically match a relation defined on this set. Because of its

importance, we shall presently quote the generalized version of

this theorem.

Before we proceed to the details on the relation between

ordered structures and linear functionals we shall recall briefly

a couple of notions from the theory of ordered vector spaces needed

in the sequel.

A real vector space equipped with an ordering compatible with

its linear structure is called an ordered vector space. More

specifically, given a real vector space 2Yand a binary relation

on 77 , then the couple < Zfr, 4 > is called an ordered real

vector space if and only if

(±) is reflexive, transitive, connected, and

antisymmetric;

(ii) \1110/ v
1,

v
2'

w 1/11/ [v
1

v
2

v
1
+ w v

2
+ w] ;
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(iii) Vv
11

v2' E Re* [v1 v2 -4. a v
1
4 a v2 .

An equivalent definition can be given in terms of a cone. By

a positive cone in a vector space, we mean a nonempty subset c:V/

such that the following geometric properties are satisfied for all

v, E

(a) v, w =1* Vi-WEC

(b) aERe8c1TE CZITEt

(C) VEt Sc-VE

(d) v V -v e t;

The link between the ordering relation A and the cone t

is given by

for all v, w E

Hence, the notion of an ordered vector space can be given equiv-

alently in terms of the structure < C > . The reader will

remexber our discussion of the translation of relation-theoretic

notions into geometric ones in Section 1.4. If e; satisfies

only (a) and (b), it is called a wedqe. Hence, in particular, a

wedge is a convex subset of V'. If the ordering in 2P/

allows us to construct a supremum and infimum for each subset of

/7then < > is called a lattice-ordered vector space.

*)
Re

+
denotes the set of non-negative real nuMbers.



Since there is a close relationship between the ordering and

the topological structure of the ordered vector space, this is

reflected in the specific nature of linear mappings on these spaces.

Thus we can translate the geometric notions into functional ones,

as pointed out in Section 1.4. This fact is hidden in the Mazur

and Orlicz generalization of the classical Hahn-Banach Theorem.

THEOREM 1 (Mazur-Orlicz) Let V be a vector space and <V; >

a complete lattice-ordered vector space. If T : 1,9'..---a/11/is a

mapping for which

cp(v + w) cp(v) + cp(w) for all v, w e

cga v) = a cf.(v) for all a E Re, v e

and if
(vi)ieI E V1/8` fwiLleI S.

mapping 0 : 2--4-'---) w such that

(i) wi ,4 0(vi) for all i e I,

(ii) 0(v) -4 cp(v) for all v E

if and only if

then there is a linear

for any [iv i
2 n

I and (ci
1,

a
2,

a
n

c Re

it is true that

E w. cp(E M
kk=1 lk k=1

There are several known prours of this theorem. We shall use

the argument of V. PtLc [31].

The necessity of the inequality is clear since 0 is a linear

mapping.
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41

To show the sufficiency, suppose that the inequality holds.

For given v E and (ii,
n
)cI & (a1.' a

21
...a)cRe

n

the following is true:

thus

ak w.

k=1 1k
cp(v +

k=1
k

za v ) + cg-v) ;
i
k

n n
(v + - E

k=1
W. .

K 1
k

1
kk=1

p
Since <IA/ > is a complete lattice-ordered vector space, we

(.1,

can define * (IV by

lrn n t:

*(v) = inf ( T (vit. E ok v4 ) - E akv. J .
1

1
kikeI, k 5_ n k=1 41i. k=1

ak E R;

We can shaw very fast that *(cxv) = cx*(v) for VEV1' &aERe:
+ +

In addition, if ik E I) ai Re, 1 < n, and jk e I, pk e Re, k < m,

and v
1,

v
2

E then

cp(vi+ wi ) - w. + cp p.
k=1 k 1=1 lk

(v
2
+

k=1
k

- , wJ
j
k 1=1 k

cgv1 v
2
+Eaw

k=1
+EPw.

ik
k=1

k jk
k=1

K
k k=1

k jk

Ilf(v1 v2)

Hence, *(v1 + v2) 4 *(v1) + *(v2) for

26
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Using the assumption of the theorem, we can derive the existence of

0 : 47 with the required properties. Q.E.D.

The following corollary is a simple consequence of the previous

theorem:

COROLLARY 1 If < > is a normed vector space and 5

is a functional on then there is a linear functional T :Vz'-4Re

such that b(v) < T(v) < HA for all v E 1(9'

if and only if

E 6(v)< 11 EkVII
k < m k < m

holds for all (v
k

)
k < m

:

This corollary can be used to find out what kind of conai.Gions should

be imposed on a wedge t in e/ in order to guarantee the existence

of a linear functional T on C
, and positive on 6 .

For any wedge L of 17' we set e 4. = t - [-v : v E 3 ;

that is to say, we remove from 6 those vectors whose negative

counterparts are also in t .

For S. c 0/ we define c+{ S i as the set

( E a. V. : V. E
i<m 1 1 1

cx1>0, i < m), and call it a positive

linear closure of S We set
11 II = inf (114 ), if

v ES
S s ?)1'

Now we are ready to state a theorem proved by Scott [12]:

THEOREM 2 (Representation Theorem) Let e: c V/ be a lielge. of the

formed vector space < 77, II II > Then the necessary and sufficient
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condition for the existence of a linear functional T

such that for all v E :

(i) T(V) < v ;

(ii) v E e; ,(v) > 0

(iii) v E e cp(v) > 0 ;

is the following:

:3(ki)L11: k. is convex & k. c
1 1

all I = 1, 2,

Proof:

+
C [ kJ.] &

II ki 6 II
> 0 for

i=1

i. Let T satisfy (i) - (iii). Then e:1-. (V (: T(v) > 0).

If we define k. = (v E t : T(v) > 1/i) for i = 1, 2, .00,
I

then k. is convex and te = C[C31 ki]. (i) & (ii) imply:
1

i=1

v E k. & w E t 1/i < T(V) 4. T(1.7) < Mv+wO, thus
1

1/i < 0 ki + 0 .

II. Let (ki);.1 be a sequence of convex sets in V/ satisfying

the conclusion of the theorem. Let us define 8.:Zr----*Re
1

for i = 1, 2, as follows:

6i(v) = 0

28
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1

if V E - k.

otherwise.



If v E k. for k < m and w E then

II k. <
II
1/m E v + 1/m w II , because

k < m

k. is convex. Clearly 8. satisfies the conclusion of Corollary 1.

Let us define linear functionals Ti :?r---*Re such that

8.(v) < T.(v) < v (v E /7), according to Corollary 1, and put

00 T. (v)

21
i=1

Then T satisfies (i). Ti(v) > 0 for v E Lir implies (ii).

By virtue of the definition, 81:: (v) > Ilk1 + t; II > 0 for v e ki ;

00

thus T(v) > 0, for v E k1 so that (iii) also is true for T.
i=1

Q. E. D.

COROLIARY 2

<V,iiii>

Then v E

Let ts;17'be a wedge of the normed vector space

with countable basis B, that is, = [B] U

H v > 0 is the necessary and sufficient

condition for the existence of a linear functional T

satisfying (i) (iii) of Theorem 2.

Proof: Put T = B nc+ ; then e = (v + t )] ,

vET
since if w = E a v

k
E C.;* where vk E B and ak > 0

x
k < m

for k < m then 3
k

m [vk E .

0 0

ak
w ak (vk + E

0 0 k < m C61c.o

k7k
0

29

Thus

+
) which means that w e [vk 1.
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If the basis B of the wedge in Corollary 2 is finite, then

v + t
II
>o< > v .

But it is always true that v Et+ vi-t Thus in the

finite dimensional case, the functional (I) always exists.

Theorem 2 has basic importance. We can translate b..Lnary relations

112.

on ZY/ into cones in V as explained earlier, and then show the

existence of a linear functional on satisfying certain monotony

conditions.

As an important consequence, we shall prove, using Scott's

unpublished notes, the following theorem:

THEOREM 3 Let < > be a structure; where tt is a Boolean

4algebra with zero element and unit element and is a

binary relation on e'5t such that

p Q1 A, and

A 4 B v B A for all A, B E a

Further, let
"

t(4 ) = I E a.(13. - : A. B. & a. E Re+ &
< m

& A., B. E for i < m } where
3.

A denotes a vector in the normed vector space of all continuous

functions on the Stone space Qs of a with the usual supremum norm.

Then for there to exist a probability measure P on such that

A s; B P(A) < P(B) for all A, B E
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tt 1 i = 11 21 such that, for all AI B E a

(1) A A B > A B for some i 1

(2) \Q,
n/m

[1/n < (Ak - Bk) 'j( 4 A if]

k < m

Bk Ak for k < m and Ak, Bk E k < m.

Proof:

I. Put A 4i B P(B) - P(A) > l/i i = 1, 21 .

t+( 4 ) = : B A) I Thus,

if k c=7)1/ is the convex set, generated by the set
n

U(A - B + ) B A) then the conclusion of Theorem 2

is verified, as is easily seen. Therefore we obtain a linear

functional (I) : 27:-->Re such that cp(v) < Ilvil for v E y and

B cp(A) < cp(B) 1

^.10i -k B ==.4, VA) < VB) , if Al B E a .

es.

Since cp(Q) > 0, cp(A) > 0 for A E a we can put
^

P(A) - 544-11 1 and, in view of A 4 A 4 B I also

(1)(0

P(A) = P(A) Q. E. D.

Remarks:

(1) The technique of identifying elements of a family of sets with

vectors in a vector space ?Twill be used over and over again. In
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our case assigned one-one to the element A E is the characteristic

function of the corresponding closed-and-open subset of the Stone

space Qs of a This characteristic function, which is in the

vector space t-41S2 ) generated by the set SI

s,
will be denoted

S

throughout the paper by A . (See the discussion of the Stone space
^ ^

in 2.1.) In particular, if A, B e M.5 I then A + B is the sum

in VIS
/

2 ) and is equal to (AUB)^, provided AnB=
s

If = (A : A E Ot) then clearly Ot c 27(S1s).

(2) We shall keep in mind the well-known fact that each finitely

ua,
^

additive probability measure on L45 is the restriction to of a

unique linear functional cp : 27(Ps) *Re with p(v) < HA for

v E 2)11SIs) and 01) = 1; and that the restriction of every such

functional is a measure.

(3) Theorems like

A -4 B & B C

A .-413 & C=. ----="AsAUC-kBUDI if ALCI BLD
*)

are easy consequences of the rather complicated conditions (1) and (2)

of Theorem 3.

COROLLARY 3 Let < Z, > be a structure, where et is a

countable Boolean algebra with zero element 0 and unit element SI ;

let 4 be a binary relation on t)t, such that

and A B v B 4 A for all A, B c t45
_

*)
A L B means A n B = .

3 2

-2\
0 -4 A,



Then using the notation of Theorem 31 the necessary and sufficient

condition for the existence of a probability measure P on a such that

A B P(A) < P(B) for all Al B E et

is

11 + () > 0 if B A (A, B E e45 )

Proof follows from Corollary 2.

If the Boolean algebra a is finite, then the condition in

Corollary 3 boils down to a rather simple one, namely,

n n
Bn A An 1

.

1
if A. = B,

1i < n
1

1=1 1=1

where A., B. Ea for < m .
1 1

COROLLARY 4 Let <Q, tZ, > be a structure, where Q is a

nonempty finite set; is the Boolean algebra of subsets of t'4.

and A is a binary relation on a; .

Then the necessary and sufficient conditions for the existence

of a probability measure P such that < Q, a 1 P > is a finitely

additive probability space and

A 4 B P(A) < P(B) for all A, B E ee

are the following:

(I) A A

(1±) Ø A, A

(iii) A =3 B v B -13 A

(iv) 17/ [A -a B ] B
n

4, A
n

1 ifi < n i
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A.

i < n 1

.,--.V.JB.8,k7s/ A. n A. = Li B. n B. & ... &i 1 j 1 ji < n i,j < n i,j, < n
i < j i < j

& A
1
n A2 n n An = Bl n B2 n n B

n /

where A, B1 Ai, B. for i = 1, 21 n and A.
1

< n

denotes the symmetric difference of the n sets A A ..., A
n

.

1, 2'

(For two sets A
1

and A
2'

Al A
2

is of course (A
1
n 7 ) u (T

1
n A

2
).)

Proof:

First of all, the system of identities of symmetric differences

of sets in (iv) is equivalent to E .A. = B. 1 where A
i < n i < n

denotes the characteristic function of the set A (Here the Stone

space of is identified with Q.). Secondly, (iv) is equivalent to

A ... B ..4 6 .4- ( --4 A > 0 (A, B E a ).

For (a) assume (iv) and that

A B but that

IIB-A+ )11 = 0. Then

^ ^

A - B = E ak(Ak - B
k

) for some m and for some
k < m

ak > 0 Bk Ak 1 k < m .
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Since the characteristic function A - B is integer-valued,

we may assume that the scalars ak are at least rational. By clearing

fractions, transposing, and allowing repetitions, we may even assume

that ak = 1 for all k < m. Hence

E Ak + B = E Bk + A .

k < m k < m
=N.

But since \17/ BkAAk, by (iv) we get Boa A which contradicts A B.

k < m

(b) Clearly (iv) follows from HB - A + )11 > 0 if A B.

Another easy consequence of Theorem 2 in finite case is the

following corollary:

COROLLARY 5 Let ?"-/ be a finite-dimensional real vector space

and let < M, .13 > be a finite binary relational structure, where

A m c ir and M
OaNIMO Ois a set of vectors with rational coordinates

with respect to some fixed basis of MThen there exists a linear

functional T *Re such that for all v wEM

v w cp(v) < cp(w)

if and only if

(1) v<w v w< v,

(2) V [v. w.] ===;* w
n

v
n

if E v. = w. 1

i < n i < n
1

i < n
1

where v, w, vi, wi E for i = 1, 2, n



As we have seen, the conditions to be imposed on the Boolean

algebra et enriched by a binary relation 4 in order to get

a probability measure solving the problem (P1) are rather simple

in the finite case. On the other hand, the infinite case is utterly

unintuitive. There may be some hope for simplifying the conditions

in the infinite case, too, but we shall not deal with this problem

here.

It is worth noting that Theorem 2 is general enough to be used

in proving various representation theorems, important in algebraic

measurement theory.

The structure < kA./.., > , satisfying the conditions

(i) - (iv), in Corollary 4, will be called a finite qualitative

probability structure (FQP-structure). This notion can also be

defined in terms of a strict ordering relation 4 in which

case, the axioms for < et, > to be a FQP-structure, are

as follows:

(1)

(ii) 1 A 0 ;

(iii)

(iv) i'%c7</n [Ai Bi] Bn An

where A, B, A. Bi e ee for 1 < i < n and

A. = B. .
1

i
1

i < n < n
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If we put

A - B ( --1A -4 B & B A) 1

A B (A -; B v A B)

for all Al B e then the above definition becomes equivalent

to Scott's definition, spelled out in Corollary 4; simply because

A -; B A . We shall freely use both definitions.

2.3. Additively Semiordered Qualitative Probability Structures

In Section 2.2 we discussed the general framework for the solution

of problem (P
1

)
'
and we pointed out that the method used was general

enough to be applied to other similar problems. The main task of

this section will be to give the solution to problem (P2).

The notion of a semiorder comes up when a set n'.5 is being

ordered by some relation - and, it is not always known whether

two elements from kt are indifferent. More precisely, a couple

*< > is called a semiorder structure iff '
)

it satisfies

the following conditions for all A, B, C, D E :

(i) A A ;

(ii) A B & C - D ===.->. A D v C ?- B ;

(iii) A `?-- B & B C =-4.> A D v D C .

The concept of a semiorder is due to R. D. Luce [32], and the

axioms (i) - (iii) were given by Scott & Suppes [33].

* )
iff is short for if and only if
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If a semiorder structure < > satisfies also

(iv) A - B = = t ) - A U C B U C if A, BLC,
*)

then we shall call it an additive semiorder structure.

In this section we shall deal with finite additive semiorder

structures < > ; the interpretation of the formula A B

for Al B E ni will be: event A is definitely more probable than

event B.

(We prefer to use the symbol >". instead of because of

the possible confusion with the strict qualitative probability

relation discussed in the previous section.)

We assume the motivation for a semiorder relation >°-. to be

known. Perhaps we should point out that semiorder is an adequate

notion for representing algebraic measurement problems, in which

the given measurement method has limited sensitivity, so that/locally'

the transitivity for does not hold. In psychology one talks

about the so-called just noticeable difference (121), whose appropriate

numerical measure is a fixed positive real number 6 (which can

be normalized to 1 by choosing a suitable unit). Hence 6 is a

measure of the threshold of the measurement method.

For more sophisticated measurement problems we have to assume

that Ind is not constant, but varies from one measured entity to

another. For this purpose, Luce [32] introduced the notions of lower

and upper jnd measures e and 6 which, in fact, define a Ind interval

* )
A I. B means A (1 B = 0 . The other notation from set theory

and logic is standard.
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about each possible result of measurement.

Bearing all this in mind, we turn now to problem (P2). For

methodological reasons we prefer to start with the following definition:

DEFINITiON 1 A triple < Q, > is said to be a finitely

additive semiordered qualitative probability structure (FASQP-structure)

if and only if the following axioms are satisfied:

S
o

is a nonempty finite set; L94t is the Boolean

algebra of subsets of Q ; and is a binary

relation on ;

;1

S2 A A

s3 C B ==4> C A if A c: B ;

S4
[Ai Bi 8c Ci Di ] [An Bnvig Cn Dn

where Al B, C, Ai, Bil Cil D. for 1 < i < n ; and

E (A. + D.) = E (B. + C.) . (A denotes the
1 1 1 1

i < n i < n

characteristic function of the set A.)

Remarks:

(a) As pointed out before, the formula in axiom S4 that concerns

characteristic functions can easily be translated into a system of

identities among sets, by means of the following fact:
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E A. = E B. for m < n 1 if and only if
1

i
1

< n < m

A. = LV B. ;
1 1

i < n i < m

..1 A. A. = k:2 B. B. ;

1 j ij 1 j
ilj < n l < m
i < j i < j

A. A. A.
1
m

B1 B2 B
m ;

11, 12'
m 5-

n
11 12

11 < 12 < < i
m

A. A. A. = 0, if m < k < n y

ilyi2y...yik < n 11 12
1
k

11 < 12 < < ik

A., B. E a 1 <i<n, 1<j<m.
1 j

Thus the FASU-structure is given by axioms which contain as

primitives only the relation and the algebra C,/& over SI

,

(b) For the purposes of this section we shall define:

A r---B < > (-A 5-B & >--A)

Ay B, C r}t

where

The relation ;called the indifference relation) is reflexive

and symmetric, but not transitive. The relation ^, (called the



indistinguishability relation) is reflexive, symmetric, transitive,

and monotonic; that is (C A&A}- B)

Sometimes we shall need the set N(A) called the neighborhood

of the event Al which is simply the set (13 E : B A) . Note

that for Al BE at, N(A) = N(B) In tt we get

an induced weak ordering 0>

A 13 40). A >- B 3 [13 c E N(A) & C 13] v
C

D
D E N(B) & A .

We shall seldom use these last two notions, even though they

are very *portant in semiordered structures.

In the sequel we shall discuss also the quotient structure

< a/-, e/-, > abbreviated by < Q, et", > ; in this

structure P.-I will be written as .

(c) There is no doUbt that the axioms S
o
- S

4
are consistent and

independent. It is enough to put = (0, 1)1 = (A : A c:

and define in an obvious way. Then this triple becomes a model

for the axioms S .- S4

(d) The crucial axioms are S
2

and S . Axioms S
1

and S
3

will

later impose the so-called normalization condition on the representing

measure. S
4

in fact, will be used over.and over again; and we

need S
1

to prevent the axioms from being satisfied by a trivial

structure.
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(e) The definition of infinitely additive semiordered qualitative

probability sturctures, which can be represented by probability

measures on a and by jnd-measures (see Theorem 6), does not

cause any fundamental difficulties. The axioms (particularly the

analogue of axiom S4) are, however, extremely complicated, and

much less intuitive than those given dbove; this can be checked

by a glance at Theorem 3 and Corollary 3. The infinite case will

therefore be omitted here. As usual, in this case the topological

properties of > may be of considerable help in simplifying the

solution.

In the following theorem we examine the content of the above

definition.

THEOREM Let < a, a 1 > be a FASU-structure. Then

for all A, B, CI D e e4% the following formulas are satisfied:

(1) A --B&C (A .-Dv ;

(2) .A>--B&C ;

(3) .A.-B&B--C (A n--C) ;

(4) AUDBUDI
(5) A>--B 4=;* T3>---A;

(6) A c B

(7) 10 A & I A ?- Si ;

(8) A>.-B&B)-C

( 9) A 16 - ;

if Al B D ;



(10) -,A,Ø A-f6;
(11) --iAr-=:SI

(12) .\)/ [A.>-B]1 <n-F1 1 1
Bn+1}An+1

and A1., B1. E a , 1 < i < n+1;---

,
" ".

if E A.= E B.
i<n+1 1 i<n+1 1

(13) A>.-B&C>-D ...AUC-.BUD, if ALC&BID;
(14) A>.-B&C?-D AUC>.-BUD, if ALC;
(15) A:-.B --1)3>-A;

(16) A U B >-CU D (A>-C B .-D) 1 if CLD&AB)-0 ;

(17) A.=-0&B-16 ..Pi-]3;
(18) AcB&A>-16

(19) AcB&Bfi ....A-..:16;

(20) A=B <=> T E ;

(21) A-SI &BS = .A..--1B;

(22) A-B A-B>-56 1 if BcA;
(23) A-.k.:B4=#>AUCBUC, if Al BLC;

(24) A,-,BA,--)5.;
(25) AcB&A>-C .B>-C;
(26) AcB&B,-,g5

(27) AcB&A,-,S1 Br-ft;

(28) A^,B4=t> AUC^#BUC, if AIBLC;
(29) A...B&C",D -AUC-BUD, if ALC&BiD;
(30) < fl, , > is FASQ,P-structure;
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(31) AS.-BvB-AvA.=--B, and each of the formulas excludes

the other two.

(32) (A ?.-B C & C >.-D) A >-.D ;

(33)

(34) A >-- B ==*- B .>- A ;

(35) Aa"B

(36) A >-.13 & B.}-C = A -}-C ;

,

(37) < 4 > is a weak ordering structure.

Proof:

(1) (a) Suppose that A -B & C }-D & A }-1) . In S
4

put

n = 2 and Al = A 1 B1 = B 1 A2 = C 1 B2 = D 1 C1 = A 1 D1 = D 1

A A A A A A

C2 = C 1 D2 = B . Then since Al + A2 + D1 + r = Ei + B2 + Cl + C2
'

we have C .

(b) Suppose that A & C & . As before, put

Al = A B1 = B 1 A2 = C 1 B2 = D 1 C1 = C 1 D1 = B 1 C2 = A

D
2
= D . Then obviously we get again

Al + A2 + D1 + D2 = B1 + B2 + C1 + C2 .

Thus A .

(2) (a) Assume that A}-B &C-A & 1--B; put A
1
=A,

B1 = B 1 A2 = C 1 B2 = A 1 C1 D 1 D1 = B 1 C2 = C 1 D2 = D .

Again the condition on characteristic functions is setisfied. Hence

using S4 we get the conclusion.
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(b) Proof is the same as in (a).

(3) Use the same techniaue as in (2).

(4) Put Al = A , D1 =BUD, B1 = B

Al + D1 = Bl + Cl

C
1
=AUD. Obviously,

since A, B D .

Using S4 we get the conclusion in both directions.

(5) Use S4 with n = 1

(6) A c: B implies B = A U AB Now

holds in view of (4) .

Finally, since -71 0 (as we can check from S3), we get the

conclusion.

(7) If A A then by S3 , 0 , which is a contradiction.

For the second part use (5), and then the first part of the theorem (7).

(8) Follows from (3) by putting D = A .

(9) Use (5).

(10) The assumption implies that A v 0 }-A . In view of (7)

we get A 0

(11) Use (7) and the definition of

(12) In S
4

put C. = D. = 0 for 1 < i
i1

<n-1 and D
n
= A

n+1

C
n

= B
n+1

. Clearly from the assumption we get

/1.

E (A. + D.) = E (B. + C.)

i < n i < n

Naturally we have also 47/ (A. }..B C. D.) and A
n

B
n

.

i < n 1 i

Thus, by S4 we have Bh4.1.- An+1 .
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(13) Follows from (12).

(110 Follows from S4 ; for
" A L C .

(BD) A + C + (B U D) = B + D + (A U C)" + il , if

Now A >-. B , C ..- D , --I 0 >.- BD by the assumption. Hence A U C }.- B U D .

(15) A - B 4f. iir >--ii by (15). Now if B - A were the case, then

by (13) we would have S/ >-S/ , which is contrary to S2 . Consequently,

--) B >.- A .

(16) (e) Clearly (AB) + (A U B) + C + D = (C U D) + A + B + yo

if C .i. D .

Assume A U B C U D and AB 0

we get immediately B 5- D .

, and let I A 5- C . Then by S4

(b) Proof is similar to the proof of (a).

(17) Let A.---.0 &B.--.. 0 and 1A-..B. Then .A},-BvB}-A;

so, by S3 , A }- 0 or B >-95 , which is a contradiction.

(18) B = A U TB . Thus A .. Ø 4.1> A U -fil = B 5- TB by (10 . Finally,

in view of S3
"

we get B >.- 0 .

(19) Let A cB &B 45 and ----1 A --:-.45 . Then by (10) A -95 and

by (18) B >-95 , which is a contradiction.

(20) Use the definition of ---:.: , and (5).

(21) Use (5) and (20).
^

(22) B + (EA)" = A + il 2 if B c A . Use (12) twice.

(23) Use (5) twice.

(24) Use the definition of ^, , and (20)

(25) A C B ....*Tc-A, so "6">--A -.'o->--fi by S3 . Thus B }-C .
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(26) Assume that AcB&B-d0 1 and . Then AB&A p

in view of (19) and (17). Since --IA B 1 we have two cases:

(a) a[C A & C .-B] .

From A c:B it follows by S
3

that C 1 which is impossible.

The case C f=-. A & B >...0 would lead to B .

co [c B & C -A] .

Hence, C >-0 and also C 0 1 since B p . But this is a

contradiction. The case C B & A >.-C leads to A, 0 which is

also impossible.

(27) A 404 A by (24). Use (26) and again (24).

(28) Let A, B C . Then

A -,B4=). A/ = B/ 4'7=2% q/ = B/- u c/

AUCkv =BUC/ <=4. AUCBUC.

(29) A - B B/s-, 1 C D = C/ = D/ . Assuming

ALC&BLD, we get A/i-dUC/r., = B/UD/e., Hence we have

also AUC",BUD.

(30) Use the fact that is a congruence relation.

(31) - (37) are trivial consequences of the previous cases. Q. E. D.

Theorem 4 illuminates the intuitive content and the adequacy

of our definition. Before we proceed to the formal justification

of the definition by proving the so-called Representation Theorem,

we shall quote an easy consequence of Theorem 2, due to Scott [11]:

LEMMA 1 Let it be a finite-dimensional real linear vector space

and let 0 A m c: N c V' where N is finite and all its elements

have rational coordinates with respect to a given basis; further,
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let N = (-v v E N) (i.e. N is symmetric).

Then there exists a linear functional T 0"---)Re such that

T(v) > 0 v E M

if and only if

(a) V E M or -v E M

here.

for all v E N

vi = 0 &
i < m i
V (v E M) -V

m
E M ; where

i < m

V) 'V. EN) 1<i<m.

The proof is given in Scott [111 and for brevity will be omitted

THEOREM 5 (Representation Theorem) Let < Q 1 Z, >- > be a

structure, where Q is a nonempty finite set, e't is the Boolean

algebra of subsets of Q 1 and - is a binary relation on e4.:

Then <:Q , a > is a FASQP-structure if and only if there
.1110.

exists a finitely additive probability measure P and a real number 6

such that < Q , P > is a probability space end for all A 1 B Etat:

A >.-B 41.4 P(A) > P(B) + 6 where 0 < e < 1 ;

A B =4> P(A) = P(B) .

The theorem remains valid if the representation is given in

the form

A B 44> P(A) > P(B) + E where 0 < 6 < 1 ;

A Z B P(A) = P(B) .
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If E = 0 then the FASQP-structure reduces to a FAQP-structure

(finitely additive Qualitative probability structure), such as discussed

in Section 2.2.

Proof:

I. The existence of a probability measure P on ift and a real

number

Suppose that < ,be, > is a FASQP-structure. Then in

view of Theorem 4(30) < 1 > is also a FASQP-structure.

*)
Let us define St

o
= Q U (e

+1
) where e

1m+
I Si

m
= M '

= (e e e ) E = Ce ) Then any element A of it **)
1, 2' .." m 111+1

can be uniauely represented by its characteristic function A which

we shall consider now es a vector

A = < A(e
1

) A(e
2

) . A(e
m
), A(e

m+1
) >

in the m+l-dimensional real linear vector space ) generated

by vectors ((e.)) 1 1 < i < m+1 . It should be clear what is

meant by A + B and a A in VIgi
o

) 1 if a is a real number

and A, B e tA5 (For the time being we use the same variables as

we used for the elements of Z ; this is for simplicity of notation.)

The reader should consult Remarks (1) given after Theorem 3 in Section 2.2.

*)
' IAI denotes the cardinality of the set A.

**)
' Variables Ay By Cy Dy are now running over the

algebra
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Let us put

- B E : B e ) U - A + E B e ) and

^ ^ ^

M = - B E : B e & A B) U (B- A + B e r.t & A >!-B) .

Then surely A mc:N c VvOi )
'

N is finite and symmetric, and
0

contains only rational vectors with respect to the basis

^m+1
(((e.)) . For, e

m+1
e M by S

2'
//Z., is finite, and

1 1=1

nn,
furthermore, v e N -v e N for any v e LT (:2 )

0

If v e N then v e M or -v e M since A >f-. B or

where A, Be n. and v=A-B-E or v=B-A+E.

Therefore the condition (0) in Lemma 1 is satisfied.

Now the condition [v. e M] in (p), Lemma 1, is equivalent

to the condition

v. = A. - B. - E & A. B. (2.1)
a. a. a. 1 1

or v. = B. - A. + E A. B. ;

1 1 1 1
(2.2)

that is to say, some of the vi's have the form (2.1) and the rest

P-1
have the form (2.2). If we relabel the sequence (v.) so that

1 1=1

the first k elements (k < p) have the form. (2.1) and the

remainder the form (2.2), then we get an alternative version

of (2.1) and (2.2):

.0\

v. = A. - B. - E & A. B. 1 < i < k
1 1 1 1 1

(2.3)

or v. = B. - A. + E & A.V-B. k+1 < i < p-1 1
1 1 1 1 1
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where k is some natural number 0 < k < p-1 .

The condition E vi = 0 is equivalent to
i < p

that is,

kA A A p-1 A A A
(A. - B. - E) + (B. - A. + E) + v = 0

3.1=1
1 1

i=k+1

A

v + (p -2k + 1)°E + E (A. - B.) +
1 < i < k

1 1

(B. - A.) = 0 (2.4)
k+1 < i < p-1

1 1

Since v N we get two cases:

A A A
A) v =A -B -E:

P P P

A

Since E cannot be written as a linear combination of the

A M
elements of 27-(n) (which are generated by vectors Me1 )) )

i=1

actually belonging to (A : A e tZ 1), E cannot occur in (2.4)

the same number of times negated and unnegated. Therefore

(p - 2k - 1)°E - E = , that is p = 2k + 2 . Thus the equation

(2.4) can be rewritten as follows:

kA P1A A k A p-1 A
A + E A. + E B. = B + E B. + E A. . (2.5)p 1 1 p 1 1

Using the substitution

A. = A. 1 B. = B. for 1 < i < k y1 1 1 1
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Akia = Ap 1

C. = B.
1 +k

B
k+1

= B
'

D. = A.
1+k for k+1=p-k-1>i>11

vt from (2.5) the following formula:

k+1n-,
E (c. + = E (D. + B.)

;:=7 1 1 1 1
i=1

The conditions

A. B.
1 1

(2.6)

(1 < i < k) and A. B. (k+1 < i < p-1)
1 1

in (2.3) are now equivalent to the following condition:

* *

i < k+1
.

i i
B. & Dk+1 C

k+1
.

Finally,

which is

B)

Lemmalgives us -v EM, that is, B -A +EEM,
P P

equivalent to

vp = Bp A
p

+ E :

* e.
Ak+1 ?--

k+1

For similar reasons as before, p = 2k and then (2.4) becomes

k^ p k ^ P ^
Z

i
.IP11.4-i:ciaBi.- E B. + Z A. .

i=1
1

i=k+1
1

Now if we put

A. = A.
1 1 '

B. = B. for 1 < i < k and
1 1

(2.7)

C. = B
i+k '

D
i

= A
i+k

for 1 <i<k=p-k, then (2.7) becomes

k k^* ^ ^* ^
E (A. + C.) = E (B. + D.) .

1 1 1 11=1 1=1
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The conditions A. B. (1 < i < k) and -71 A.5:- B. (k+1 < i < p-1)
1 1 1 1

in (2.3) are equivalent to the condition

V [ix.. & D V-- C] & Bk*
i < k1 1

. .

lemma 1 gives us -v E M that is

equivalent to Dk!-- Ck .

A A A

A -B -EEM
P P

which is

Finally, joining the cases A) and B) and changing the notation,
k+1 k+1 A

we get for p = 2k + 2 1 E (A. + C.) = (B. + D.) ; moreover,
1=1 1 1

V [A ?I B & D. implies [D >f-C `e:-114, ]
i < k+1 i i 1 1 k+1 k+1 K-1-1 K+1

Similarly, for p = 2k we obtain

k A ^ k ^ ^

E (A. + Ci) = E (B. + D.) ;

1=1 1 1=1
1 1

and 1191
k[Ai

..t-B

i
& --ID. C.] implies ifik-BkDk-Ck] /

i < 1 1

that is, for n = p/2

e [A B. &Ci >:-Di ] & An-B
n
,.0

n
$:- D

n '
ifi <ni

^ A 01

(A. 4- D.) = E (B + C.) .
1 1

.

i < n

The dbove reduction of axioms S
2

and S
4

to the conditions (a)

and (p) in lemma 1 allows us to use the conclusion of Lemma 1. That

is to say, S2 and s4 are the necessary and sufficient conditions

for the existence of a linear functional cp : ?)'ffE ) --)Re such
0
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that cp(v) > 0 4.4v E M for all v E N .

Since E E M (axiom S
2

)
'
we have T(E) > Q , and since

-E A M 1 it follows that cp(-E) = -T(E) < 0 ; hence cgE) > 0 .

If AI Bea, then

A !.-13.*.A B E e M4.4cp(A) > cp(B) + cp(E) .

Consequently, Si gives us cp() > TOO + T(E) > 0 so that

we can put

'OA) (g,19
cp(f)

In order to simplify the notation, we translate the result from

the vector space /9C50) into the Boolean algebra a (c.f.

Section 1.4 and Remark (1), given after Theorem 3, in Section 2.2)

by putting *(A) = To(A) . We also define the pd-measure 6

to be *(E) .

In view of S
1

we have 0 < E < 1 . Obviously

(i) *(6) = 1 y

(ii) A L B U B) = + r(B) .

Clearly for A L B we have *(A U B) = To((A U B) ) =

T (A + B) = T
0
(A) + T

0
(B) = *(A) + *(B) .

0

After translating into the new notation we get also

(iii) A 4(=>*(A) > 11/(B) + 6 .
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Now we shall prove that *(A) > 0 for A e Assume

that *(A) < 0 for some A e t4, . Obviously A (A >tp would

give *(A) > E and p >:- A is impossible in view of Theorem 4(7)),

and A A . Therefore we get two cases:

a) B A & B >:-16 for some B e et . Hence *(B) > 6 1 so that

lf(B) - i(A) > 6 which means B A . But this is a contradiction.

Case B -Lc A & B contradicts Theorem 4(7)).

b) B 4:p & A ?=-B for some B e Thus, in view of S3 we

have A --16 1 which is impossible. The case B & B would

contradict the consequent of S
3

. Hence the assumption *(A) < 0

leads in all cases to a contradiction. Consequently, we have for

A e tl:

(iv) *(A) > 0 .

Finally, if we put P(A) = *(A/-) 1 where now A e 1*)

then P is a real valued function on a and the conditions

(i) - (iv) are satisfied if we replace * by P and the algebra a

by a Moreover,

(V) A - B P(A) = P(B) if Al B E a .

Thus on the basis of (i) - (v), < a , a , p > is a probability

space, and P is the desired finitely additive probability measure

of Theorem 5.

II. The probability measure P on et and the existence of a

real number E, (0 < 6 < 1) imply the axioms Si - S4 .

* )
Variables A, B, CI DI .. are now running over et again.
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Let <: Q 1 M51 P > be a probability space such that

A B 4=0. P(A) > P(B) + E where 0 < E < 1 1 and

A B ==0P(A) = P(B) for all Al B e i4: .

One can easily check that:

1 = P(R) >6 implies Si ,

P(A) > P(A) + E implies S2 ,

A c:B P(A) < P(B) and P(C) > P(B) +t P(A) + 6_

together imply S3 ; and finally, if we put %Mein') for

1 <i<ml we get the linear functional from lemma 1.

The condition

E (A + D ) = E (B + C )

i < n i < n

then implies

E [*(Ai) = [*(Bi) Cei)]
i < n i < n

and thus the condition

\V/ [A B & C. >-D.] & B
i < n 1 1 n n

gives us

E P(Ai) > E P(Bi) + (n
< n i < n
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and

EP(C.)>EP(D.)-i- (n - 1) E
i<n 1 i<n 1

P(An) > P(Bn) + .

Adding together these inequalities and sUbtracting equality (2.9)

from the result, we get

P(Cn) > P(DIn) + 6

which implies C
n

>- D
Pri

.

Thus the proof of the Representation Theorem is complete.

A question arises of what group or set T of transformations

the probability measure in Theorem 5 is unique up to; or in other

words, 'how many' different probability measures can we have, once

a binary relation in a FASQP-structure is given. We might expect

some periodic functions with period E to be the elements of the

unknown set T The complete answer does not seem to be simple,

and we therefore leave it as an open problem. Some further dis-

cussion of this subject will be given in Chapter 5.

We pointed out that the intransitivity of the relation

reflects the inability of a measurement method (or apparatus) to

distinguish or recognize two different magnitudes of the measured

quantity, when their difference is below the sensitivity of the
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method. More refined measurement methods are needed to make these

magnitudes distinguishable. This amounts to considering a lattice

of relations (.). where7,...isfinerthaniff
1 1E1 1

A B =AB for all A,Bt (i) E I) The set
J

then characterizes the class of measurement methods from
1 1E1

the point of view of sensitivity.

In psychology there are problem in which is not constant,

but varies with the entity on which the measurement is performed.

In particular, if A E then 11(A) and 77(A) characterize

the change in probability necessary for indifference to become

preference >-

then

If we put for A E

1:(A) = Max [P(B) - P(A) )

(2.10)

t (A) = Max (P(A) P(B):A:-B&BEY)t ) ,

(i) 0 < r(A) 1 6(A) < 1 ;

(ii) A B P(B) - 6(B) < P(A) < P(B) r(3) ;

(iii) A 5- B 4 P(A) > P(B) + E(B) ;

(iv) P(A) < P(B) + 4i=t,-P(A) < P(B) + E(A) ;

(v) P(A) < P(B) 4 [P(A) + -E(A) < P(B) + i7(B)N1

P(A) + (B) < P(B) + E(A)] ;

(vi) A C B < E(B) .
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This is easily checked. Consequently, Theorem 5 can be proven also

for the variable jnd's E(A) 1 given in (2.10). It

is an open problem how to give a representation of <:g/ et, - >

inter= of P E 5 1 without assuming the condition (2.10)-
a priori.

2.4. Quadratic Qualitative Probability Structures

In [34] Luce and Tukey gave a formal presentation of what

they calledconjoint measurement structures. Such structures are

linear. Here, by constrast, nonlinear (quadratic) measurement

structures will be introduced for probability. More concretely,

given a finite Boolean algebra a of subsets of Q and a binary

*)
relation 4 ' on the set of Cartesian products of elements

from el% , we shall give the necessary and sufficient conditions

for the existence of a probability measure P on such that

for all A, B, C, D e et

A x B 4 C x D =4 P(A) P(B) < P(C) P(D) .

As will be seen later, the appearance of Cartesian products

AxB, CxD here is not essential; we could as well consider

the ordered couples < A, B > ) < CI D > Structures of this

*)
' For typographical simplicity, we use the same syMbol that

was used in Section 2.2 for a different ordering.
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sort differ from Luce's catijaint measurement structures in three

respects: they are finite, the representing function has a special

property, namely, it is additive, and finally, the representation

is quadratic and not linear. Since most of the laws of classical

physics can be represented (using the so-called v-theorem) by

equations between a given (additive) empirical quantity and the

product of other (additive) empirical quantities (possibly with

rational exponents), such a structure is of basic importance in

algebraic measurement theory.

For instance, for Ohm's law we might hope to give, for the

system of current sources (ci)i and resistors (r.)li<m/
1114.11,

a representation theorem in the form:

< c., r. > < c., r. > I. R. < I. R.
1 1 3 3 1 1 - 3

where on the right we have well-known physical quantities, namely,

current and resistance (i < n, j < m) .

This is a digression. Returning to quadratic probability

structures, the reader may wonder in what way the formula

A x B C x D (Al B, C, D ) in (2.12) can be interpreted.

There are several partial interpretations which will be dis-

cussed in the sequel:

(a) Qualitative probabilistic independence relation :

ALB 4-,-----ABx0-AxBI
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where, as usual, A, B re and is the standard equivalence

relation induced by 4

(b) Qualitative conditional probability relation 4 :

A/B-4 C/D--.'" >ABxD CDxB, if f5xQ-?)BxD,

where Al B, C, D E tt and -; is the strict counterpart

of =i . The entities A/B, C/D can be considered here as

primitive.

(c) Relevance (positive and negative dependence) relations C
+,

C

A C.+ B 4;==': A x B -4 AB x ;

A C_ B AB x -4 A xB

where A, B These notions may be of some help in analyzing

causality problems. It is immediately obvious that AC
+

B464A/C/ A/B

and A C_ B 4=.1>A/B -;

(d) Qualitative conditional independence relation

A/CitB/C x BC ^, ABC x C , if -4 C,

where Al B, C E .

Since, as can be seen, there are several important interpretations

of the formula AxB CxD, we shall study the structure uf

the 'quadratic' relation in considerable detail.

IL
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DEFINITION 2 A triple < M > is said to be a

finitely additive quadratic qualitative probability structure

(FAQQP-structure) if and only if the following conditions are

satisfied:

QO

1

Q2

Q
3

Q
4

Q
5

a is a nonempty finite set; et is the Boolean algebra

of subsets of 0. ; and -4 is a binary relation on

(A x B : A e & B Ea )

Xn Q. X 0. ;

0 X A B x C ;

A x B -4 B x A ;

AxB-43CxD V CxD4AxB;

\VI
n

(fil

i
x B. 4 Aa. x B ) =04> A0n

x B A A
n

x Bn ;
i < .Pi Pn

Q6 i<n
(c x D -a E. x F.) --lk-En x Fn 4 Cn x Dn

3.

where Vx A. x B.) E (C. x D.)1 = E (E. X: F.)

i < n ±<n 12 2

Al B, CI DI Ai, Bi, Ci, Di, Ell F. E (i < n)

permutations on (1, 2, n) and (C x D)' denotes the

characteristic function of the set C x D .

Remarks:

(i) We define

AJ.J34=i>AxS24 Bx0.;

CxD4-->----iCxD AxB;
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AxBe..CxD4.:NAxB=CxD & CxD=AxB;
(A x B(ai, w2) = 1 if wi e A &

otherwise (A x Bnai, co2) = 0 (ail 032 E .

(ii) The formula concerning characteristic functions in axiom G6

can easily be translated into a system of identities among sets;

a similar transformation was made in the case of the qualitative

probability axioms listed in Section 2.2. Thus the axioms for A

contain as primitives only the relation 4 and the algebra a

The content of the above definition is laid bare in the following

easily proved theorem.

THEOREM 6 Let < Q )"C > be a FAQQP-structure. Then

the following formulas are valid for all AI B1 CI DI E, F e :

(1) AxBr-AxB;
(2) Ax13^-BxA;

(3) AxBA CxD&CxDAExPl==)AxB,-skExF;
(4) AxBxC4=0..AxD4BxD, if faxSZACxD;
(5) AxBCxD&ExC-aFxBAxE4FxD, if /5xSZ-4BxC;
(6) AxB4CxD,BXA--2,,DxC;
(7) Qx.A4BxQ&CxQ.A1QxDAxC4BxD;
(8) AxSZ-4BxQ4g.k.AxA-ABxB;

(9) A x C x D-(A 4 C44==.D4B) ;

(10) (AxA...kFxF&AxE
DxDscExE.3DxF)-....o.AxE4DxF;

(11) A B44-A x B ;
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(12) ch--A&A-iBiy5xa--Ui><B;
(13) e (A. x B. C. x D.) e (C x D -2.2,, A x B )i < n 1 3. 3. 3. i<n 7. 8. a. P.

3. 1 1 3.

x B C D if (16xS/AC
1

xD )a
n

Pn y
n

< n 7- 6-n

where A., B., C., D. Ea (i < n) 1 and a, p, 71 are
1 1

permutations on (11 21 n) ;

(11+) If A A B<==.>Axn4 Bxn, then <0

is a FQP-structure.

40>

Theorem 6 will be useful in several ways. In particular, the

properties of will be derived from it.

Before we proceed to the representation theorem for FAQQP-

structures, we must give a brief review of tensor products of

ordered vector spaces.

The tensor product of two vector spaces 1/
1

and 4,
2

roughly speaking, the set of formal sums

E Ce.(v.Ow.),wherea.ERe 1 v. E i?); W. E1 1 1 1 1 1I < n

for i < n

this is made into a vector space by considering the following

1
formulas to be valid for all v

1
v
1,

v
2

E C
w' wl,

W
2

and a E Re :

(va. + v2) ow. vlow + v2 w;
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v 4) (w1 + w2) = v 0 w
1
+ v 4) w

2 '

a (v w) = (av) w = v 0 (aw) .

lad/
If t,

1
and V' are equipped with cones

2

respectively, inducing orderings in and we shall
2 '

call the couple a tensor product of the

ordered vector spaces < 2,9 t
1
> and < 62 >

iff = z a
i

(v. 0 w. ) : v. e & v. e e & Q E Re

i < n

for i < n) .

The tensor product of ordered vector spaces is again an ordered

vector space; and, in particular, if <
1 5

>
5 2

>

are the given ordered vector spaces and < '2) 0 2,fr 4 >
1 2 '

is their 'brdered' tensor product, then

(i) 0
1

4 v & 0 -42 w 0 4 v w ;

(ii) vl wl v2
0 w2 (v1 14.1 v24-4142 -42 wl)

where v, v
1,

v e
1 ' w' wl, 2

w e

The well-known natural isomorphism between the space of

bilinear functionals on 119--x 2,9' and the space of linear
1 '2

functionals on .7/9-3-: Vic 2J1-) 2o n) 5

turns here into an isomorphism between the space of order-preserving

bilinear functionals and the space of order-preserving linear

functionals.
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For finite dimensional ordered vector spaces <
1 1

el >

>
dim ( )P V

2
") dim /2K- dim

v 1
if< 2

2

< > is the 'ordered' tensor product of 1/4--
6 1 vji 2 I " 1

and , then

where

= ( E v. OD w. :

i VfE t *1i < n

t*

Vget:

denotes .the dual cone in

vector space of 12 for i = 1, 2.

19'

f(v.).g(w.) > 0) 1

i<n

and 2Y: is the dual

THEOREM 7 (Representation Theorem) Let <:Q 1 tt, 4 > be a

structure, where Q is a nonempty finite set; is the Boolean

algebra of subsets of SI 1 and is a binary relation on

(AxB:Aea &Bea;

Then < 1 t'4; 1 > is a FAQQP-structure if and only

if there exists a finitely additive probability measure P such

that <SI 1 2t 1 P > is a probability space, and for all

A, B, CI D e a,

AxBACx 1:).>P(A) P(B) < P(C) P(D) .

Proof:

I. Sufficiency

(a) Translation of the problem from the language of relations

into geometric language.
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We shall first represent the Boolean

A(%) >vectors A = < Ma)
1

)
1

0.1)
2)1 ""

al =n, and A(w) = 1, if (DEA,

elements A E a by

where a = (CO a)
1/ 2/

' CD )

n '

^

A(w) = 0 otherwise.

Defining A+B, aA in an obvious way, we generateavector
^

space 2,1a) = V2' , where (A : A E a ) c V7''' and dim Pt' = n .

Defining A B A B we can generate a cone in 17

by using the set (B - A : A.aB & A, B t-t; ) ; this furnishes 2)12-/

with an ordering structure, corresponding in a one-one way to the

ordering in tt

The Cartesian product A x B will be represented by the

tensor product A 0 B in 1.--fr627

Putting A 0 B C 0 D4=*.A x BAC x D 1 we get an ordering

on 1/7ID 2 . This completes the translation.

(b) Translation of the problem from geometric language into

functional language.

Translating Q4 and Q6 into geometric language of tensors

and using Corollary 5, we have the necessary and sufficient con-

ditions for the existence of a linear functional *

such that

A e )1'3 D (A 33) < iy(C% 1)) ,

for all A, B, CI D E

In view of the isomorphism of the space of positive linear

functionals on V/D Y : 27 62,1 a3( 1), ,

we can pick up a bilinear functional cp : 2/C`" x ,
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corresponding to * and put

A

AOBC0D4=J:. T(A, B) < T(C, D)

for all A, B, C, D

Now Q
2

compels T to be non-negative: T(A, B) > *(0 C) = 0

on (A OB: AlBca ) ; Q1 allows us to normalize T:

> 0 ; and Q3 forces T to be symmetric: cga, = a) .

The last step remains, but it is an important one. It is to

show that T can be split into a product of two linear functionals:

T(A, 13) = f(A) g(B) . It is an elementary fact from linear

algebra that this can be done if and only if the rank of T is

equal to one. As 1 (P) 0 AO 27(b x P) this can be

expressed also in terms of the matrix of T . Because of the

symmetry of T 1 f must be equal to g . Axiom Q5, translated

A A
into geometric language, determines the values of T(A, B) on a

system of curves which nowhere intersect each other, as one can

check from Theorem 6()4.,5), and from countably many similar con-

sequences of Q5. Since T is symmetric and linear with respect

to each of the arguments, the curves must form a system of symmetric

hyperbolas (cf. Aczell Pickert, and Raddr[35)). In fact, since

II/E(V-0/fz.-g'4(Appl.-4,11/.-2Ef.1 0
gl
.1.7here

i < n

f., g e for i < n Thus ,fr(AeB) = E fi(A)*gi(B) .

i < n
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In view of the above argument, f = a -f. g. = p. .g.
iyi 3

3

where a 1 p. E Re for ilj < n ; and the normalization
ilj 13

of * implies f = f. = f. ; g = g. = g. for ; and

thanks to symmetry, we further get f = g as stated dbove.

Hence we get for all A, B, Cy D E t/t

a 16 013 4c----4>f(A) f(B) < f(C) f(p) .

(c) Translation of the problem from functional language back

to the language of relations.

We switch from A E I/ and f : 7/1-1.---Re to A E

and P : et---*Re by translating tensors A 13 into Cartesian

products A x B and putting

P(A) = f(A) for all A e

f(Q)

Then clearly < 1 P > is a probability space and

(2.12) is satisfied.

II. Necessity.

It is a routine matter to show that the axioms Qo - Q6 in

definition 2 are necessary. Q. E. D.

It should perhaps be pointed out that FAQQP-structures

exemplify an important class of fintie quadratic measurement struc-

tures not previously discussed in the literature.
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2.5. PrObabilistically Independent Events

As is well-known, probabilistically independent events play

an essential role in the definitions of information and entropy.

The independence relation between events is defined entirely in

terms of the probability measure P P(AB) = P(A) P(B) . One

wonders whether it is possible to give a definition of a corresponding

binary relation on in terms of the qualitative probability

relation on a . It is trivial to see that this is not

possible in terms of FQP-structures, but, as has been pointed out,

such a relation can be defined in terms of FAQQP-structures by

putting

A IL B 4> AB )01 A x B for all AI B (2.13)

This definition not only is important for qualitative informa-

tion and entropy structures, but also can be relevant in applied

probability theory, where one does not care too much about the

underlying probability structure < 1 Z., P > 1 but emphasizes

rather the analytic properties of random variables. Under these

circumstances the independent random variables could be handled

using the basic properties of 1 without explicit reference

to the probability measure P that satisfies the condition

AL B 4.i)P(AB) = P(A)

In this section we state a theorem about the basic properties

of I.
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THEoREm 8 If > is a FAQQP-structure, then

given (2.13) the following formulas are valid when all variables

run over

(1)

(2) S/ It A ;

(3) A It A..'>(A A ;

(4) AILAALB;
(5) AltB&A.LB,(AvB-4);
(6)

(7) A It B & A 4-, B maa):AB ;

(8) AltB44.B.11.A;

(9) A It B44.A ;

(10) A It 13.ft:A It ;

(11) AltBAB-;B if A-Aft &16-.1B;

(12) ALB,.446-4 A &95-?Bai).0-UB) ;

(13) A It B & B C (AB It CiEr=4-A It BC) ;

OA)

(15) AIB&AkCAILBUC, if BLC;
(16) AltB&AltCAltBnC, if BUC=a;
(17) ALB&AitC(B-4C4=0.AUB4AUC) if AASZ ;

(18) A It B & A .11. C i=*(AB AC.=>B C) if

(19) A C & AB CB (AIt B4=ItC B) ;

(20)
n

(A.B. A B )==t A B -4 A B ifi< al pi an pn nn

V (A. B. & Aai B & AiBi) and ce, fi are
< n pi

permutations on (11 2, n)
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The proof is a routine application of Theorem 6. We shall use

this theorem throughout Chapter 3. It is rather disappointing

that the qualitative independence relation which plays a

central role in probability theory, has such complicated properties.

It was Marczewski [36] who argued that probabilistic independence

has a different nature from the notions of algebraic, logical, and

set-theoretic independence. The fact that this is not precisely

true was demonstrated by Maeda [37].

The independence relation
IL

can be extended to any (finite)

fami1y of events fAi)ieI c with more than two elements in

such a way that the following equivalence is preserved:

[Ai)

icI
I [p(r) Ai) J-TNA. ] .

0 _
1)

0 0

It is sufficient to put

(i) [Al B) <f=.AILB;

(ii) fA. 31 4.-4 phIo c I [[Ai1-11- A. n Ai]
l1 a leI

0
icI

0
1 icI-I

0

It can be shown easily that

(1) fAii==.411. A. _q_ A. ;

icI

j
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(3) (A1)1_ 44=:. [(Ai ]J c I
ieI ieJ

(4) (A )] [r\
I

n Ai]

Id Ir 2
c I &I

1 2 ieI ieI
21

We shall not need these rather general properties; further

details about _1L_ are therefore omitted.
ieI

Perhaps we should point out that the I-place relation ft

ieI

enables us to treat probabilistic independence in lattice-theoretic

terms. In particular, the lattice-theoretic notion of independence

coincides under certain reasonable conditions with the probabilistic

relation As mentioned before, this is contrary to what

Marczewski [36] maintains.

2.6. Qualitative Conditional Probability Structures

The first part of this section is devoted to the study of

some simple algebraic features of the relational structure < >

where for Al B1 C1 D e a 1 04 CP is interpreted probabilis-

tically as follows: event A given event B is not more probable than

event C given event D. As stated in Section 2.11 the conditional

event A/B is defined set-theoretically as an element of the

quotient Boolean algebra tt/B = M77(B) 1 where (B)

is the filter generated by the nonempty event B.

We shall be concerned with problem (P3) of Section 1.11 the

basic interplay between the qualitative conditional probability
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structure <: la, > and the probability space <: a , 1 P > .

In particular, a representation theorem is proved.

DEFINITION 3 Atriple <: a , et, mi > is a finite qualitative

conditional probability structure (FQgP-structure) if and only if

the following axioms are satisfied for all variables running over

1 provided that in the formula A/B-4 C/D the events B and D

are elements of a = : A e a & P/D-4 A/a) :

T
0

S/ is a nonempty finite set; is the Boolean algebra

of subsets of St 1 and 14 is a quaternary relation on a
T
1

a/a ;

T2 -A ;

T
3

A/Ba AB/B ;

T A/B C/D v C/D A/B ;4

tTh Ai.a B / Bi] ==.0.
-5 o < k < nEAk/0 < i< k Pk 0 < i < Pk

A. / A =1 n B /B
1 0 13 0

0 < i < n 0<i<n i

for all permutations p on (1, 2, ., n) ; moreover, if in

the antecedent holds for some k, then holds in

the consequent;

T \S7/1<nii/B C
i
/D

i
]==4sC /D 4 A /B if

i

E a./B. = E

< n < n



Remarks:

(i) A/B-4 C/D of course means --1C/D A/B , and

A/B C/D means A/B .011C/D & C/D 4A/B .

A/B denotes a vector in the quotient vector space ; for

details of 1 we refer the reader to Thebrem 10. In fact,

A/B can be identified with the partial characteristic function

of A : [A/B](a) = 1 1 if cu e AB 1 [A/B]((.) = 0 , if cu E j

and is undefined else'where. Thus axiom T6 can be stated purely in

terms of elements of a and the relation . Note that

the set rt is an ideal.
0

(ii) As one can see immediately, the crucial axioms are T5 and T6,

corresponding to multiplication and addition laws of probability

respectively. If we admit that A/B e tX/B , then T3 is trivially

satisfied and -A is a binary relation on the set of conditional

events (A/B : A E & B e

(iii) We are using the same symbols in several different senses

in the present work. In particular, <SI 1 Z, -4 > has several

different meanings in different contexts. This leads to typographical

simplicity. There is, of course, always the possibility of designing

some more ingenious symbolism.

(iv) The definition of an infinite qualitative conditional probability

structure to be represented by a prdbability measure on a would

be apparently quite messy and completely unintuitive. Some topological

properties of =4 could make the formulation more agreeable. But

this will be not our concern now.
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Before we turn to some further details about the FQCP-structures,

we should perhaps first examine the power of Definition 3 by listing

its main consequences.

THEOREM 9 Let < > be a FQCP-structure. Then

the following formulas are valid for all variables running overa
provided that in A/B B is restricted to

.1111

( 1) A/B A/B ;

(2) A/ B 4 c/D & c/D E/F 'Imo* A/ B 4 E/F ;

(3) A/B C/D -4-C/D A/B ;

(4) A/B C/D & C/D E/F A,/B E/F ;

(5) A/B CiD & CiD E/F A/ B EiF ;

(6 ) A/B C/D & C/D E/F A/B E/F ;

(7) A/B C/D & C/D E/F ./q/13 -J) E/F ;

(8) is an equivalence relation;

(9) A/B C/D v C/D-i A/B v A/B C/D and each of the formulas

excludes the other two;

(10) A/C B/C4/..A U D/C B U D/C if Al B D ;

(11) A/C - B/C 4.4.A U D/C B U D/C if Al B D ;

(12) A c B P.A/C 4 33/ ;

(13) AB/B 4 A/B ;

(14) A/B AB/B ;

(15) Al/C B1/D & A2/C B2/D A1 U A2/C B1 U B2/D , if

B
1

1 B
2
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(16) Ai U A2 /C A Bi U B2 /D -.3:. [Ai /C -4. B., /D v A2 /C 4 B2 /c] ,

if Ai L A2 ;

(17) NB '"' ii/s/ ;

(18) A/B .--. 0 1 if A L B ;

(19) (1) A/B -4 C/D ift.AB/B A op ;

(ii) so - C/D44.AB/B ,.- CD/D ;

(iii) A/B -4 C/D444.AB/B --1 CD/D ;

(20) fiii/ B101 4 A2/B2C2 & B1/C1 4 B2/02 ...). A1B1/ 01 za A2B2/ C2

(21) Ai/B1C1 4 B2/ C2 & B1/C1 -:,4 A2/B202 A1B1/ 01 -.4 A2B2/ C2

(22) .A./ B1 C1 -,-',4 A2/ B2 C2 & B1/ C1 4 4/c2 A1B1/ C1 A A2B2/C2

(23) .A.I/B1C1 4 B2/C2 & B1/C1 -4 A2/B2C2 ....N. AIB1/C1 -4 A2B2/C2

(24-) A1/B1C1 --4 A2/ B2C2 & B1/ C1 4 B2/ C2 =4.- A1B1/ C1 A A2B2/ C2

(25) A1/B1C1 -A B2/C2 & B1/C1 le A2/B2C2 =.+A1B1/C1 --4 A2B2/C2

(26) A1/B1 C1 ^, A2/B2C2 & B1/ C1 ..- B2/ C2 A1B1/ C1 ..- A2B2/ C2

(27) .A.I/B1C1 ..- B2/C2 & B1/C1 ..- A2/B2C2 AIB1/C1 ..- A2B2/C2

(28)

k

;

;

$

B / n B. -A A / n A. if,
Pn 0 < i < f3n 0 < i < n

n A. / Ao ,-, n B. / Bo 1 and if in the
0 < i < n 0 < i < n_

antecedent ---i holds for some k I then in the consequent

--k also holds;
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For notational convenience we introduce three vectors of relations

r, A, El defined as follows: r = < =4 , , , > ,

A=<=a1,-,-A
with coordinates r. A.

In the following six

then for all i = 1,

(29)

(30

(31)

(32)

(33)

(34)

Al/Bi ri A2/B2

Al/Bi ri B2/c2

A1/01 ri A2/c2

Al/c1 ri /12/c2

Al/c, ri AL2/c2

Ai/c1 r1 A1Ce 2

clauses

& B /c
1

&
1
/c

1

& B2/c
2

& B2/C
2

& A2/B
2

& A2/B
2

>

1 for i = 2, ..., 5

we assume A. C B. c C.
3 tJ

5,

Ai B2/C2.+AI/C1

A. A2/B2-4 Li/C1

A. B1/C1-.46.A1/B1

Ai A1/B1 B1/C1

A. B1/C1 Al/B1

Ai A1/B1 B1/C1

for

Ei A2/C2

Ei A2/C2

Hi A2/B2

Ei A2/B2

Ei B2/C2

Ei B2/C2

respectively.

j = 1, 2 ;

In the following we assume Ac B
1
c C&Ac B

2
c C furthermore,

: may denote any one of the following relations: , ,

Then,

(35)

(36)

(37)

(38)

(39)

(4o)

A/B1 : A/B2 4:4 B2/ C : B1/ C ;

A/B1 : B2/ C 40=ti.A/B2 : B1/ C ;

B1/ C A/B144. B2/ C A/B1 ;

AC/BD : AB/CD tg=. C/D : B/D ;

AC/BD : C/D4=b-AB/CD : B/D ;

B/D : AB/CD** C/D : AC/BD ;
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(41) A/A B/B ;

(42) gA B/B ;

(43) a/A a/a ;

(141.) a/A a/B ;

(14-5) A/B C/D 4.4-6-/D .o 7A7B ;

(46) A/B 4 a/a ;

(14.7) .ABA7 14 A/B ;

(48) A.B/C 4 A/Bc ;

Again : is to be read as any one of 4 , 2 " Then,MEOW

(49) A.I.B/S/ A2B/S14=>1.1B A2/B ;

(50) A/BC : D/E & A/B-d D/E .A/B : D/E ;

(51) A/B : C/DE & A/B A/B C/D ;

(52) A/B : A/BC 44. A/ A/B ;

(53) Y. n[A C/D Ifi/Bi Ci/Di] A/B y

A./B = E C /D.
i < n i < n

(54) [A.1./A A2/A 4 ... An/A & B1/B B2/B Bn/B]mait.

.IyA BIB 2 if A = tJ A. & B = Bi & Ai 2

1=1 1 1=1

B1 B for i j, 1 < 1,j

(55) If A .4E 1344. A/SZ B/SZ 2 then < 41* > is a

RIP-structure;

79



(56) e [A./A 4 B/Bpi+1]..B /B ...-4 A /A for
0 < i < n 1 Pia Pn+1 n n+1

all permutations 13 on (11 21 1 ni 1 where Ai s

B. c B.
3. 3.+1

(1 = 0, 1, 1 n) 1 and. AO/An+l ..., Bo/Bn+1 ;

and if in the antecedent --"' holds for some k 1 so doesOIl la

it in the consequent.

Proof:

(1) Substitute in T. and use the definition of ,- .

(2) Since 1VB + C/D + E/F = C/D + E/F + A/B 1 and (by assumption)

A/B A C/D & C/D ,,3 E/F 1 T6 gives us .A/B 4 E/F .

(3) Use the definition of

(4) Use (2) twice.

(5) Obviously by (2) we have A/B 31 E/F . If AfB f. E/F were the

case for some Al B1 El and. F1 then 01 4 AA would be true,

and hence by (2) E/F 4 C/D also, contrary to the assumption.

(6) Clearly A/B rs 01 . If A/B ,-, E/F were true for some

Al B1 E, and F1 then also E/F -.4 A/B ; Thus by (5) we get

E/F --i C/D 1 contrary to assumption.

The assumption implies A/B -4 0/D & 0/D .1 E/F ; we can therefore

use (6).

Check (1), (3), and (4).

Use Th. and the definitions of -A and .--.

Since 'A/C + 13/C + 13/C = 13/C + A/C + 13/C and A, B i D 1

we have .A/C + (BUD)A/C = 13/C + (A U D)1/C; so, using T6,

we get the equivalence.

(7)
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(11) Use (10) twice.

(12) A c B inp1ies B = A U BA- and. also 13/C + PC = A7C + (BT)A/c .

Since OC 4 B.-A/C by T2, :using T6 we get A/C 4 B/C

(13) Since AB c A we can use (12).

WO Use (13) and T3.

(15) If B1 L B2 PC + /AVC + a2/C (B1 u B2)7D

ii2/D 4 (A1 u A2)^7 c (A1A2)^7 c ; by T2

=-4.pk1.A2/C , and so, using the assumptions, w.e get the

conclusion via T6.

(16) (1) Suppose A1 U A2/C 4 B1 U B2/D and. not AliC B1/D .

Then by T B1/D Al/C Since

+ (A1 U A2)A/C + 131/D + 132/D = A1/C + A2/C + (B1 U B2)A/D +

+ (B1B2) /D 1 T6 gives A2/C 4 B2/D .

(ii) Suppose A1 U A2/C A B1 U B2/D and. not A2/C B2/D

Then by T we have B2/D A2/C . As before, the assumptions

and. T6 give A1/C 1 B1/13$

(17) NB va by T2. But also Na

(18) A/B AB/B by (IA). Since Aj B we have A/B NB .

Finally, using (17) and. (4) we have A/B

(19) (1) A/B C/D A13/B A/B C/D CD/D (Use (13), T3,

and (2)). But also AO 4 CD/D wo. A/B 4 AB/B CD/D4 C/D .

(ii) Use case (i) twice.

(iii) Contrapositive of (i).
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(20) Special case of T5: put n = 2 and take 13 to be the iden-

tical permutation on (1, 2) .

(21) Special case of T5: put n = 2 and take 13 to be the reversed

permutation on (1, 2) .

(22) - (27) Special cases of T5.

(28) Use T5 and prove by contradiction.

(29) - (34) Special cases of (22) - (27).

(35) - (40) Proofs are analogous to those of (29) - (34).

(41) From (39) we get cD/cD A D/D and from (40) D/D 4 cD/cD .

Hence putting D = a we have a/a C/C for any C .

(42) NA .-., 0/Q-4 SZ/S2 r., B/B I hence NA -; BA .

(43) SI/A .-., WA -, SVS2 .

(44) a/A WA B/B a/B .

(45) Since A/B + VB + S3/D = C/D + t/D + S3/B 1 we use T6.

(46) gya 4 IA 4.+A/B

(47) Ac/a 4 A/c 41=> c/a 4 a/a by (38).

(48) From (38) we get ACP) wa WCD 444. c/D 4 a/D 1 and

Hence (46) gives us the result.

(49) - (51) Use (35) - (40).

(52) A/B A/BC 44o c/D A c/AB a/AB A; -67B .:t.A/B-C- 4 A/B

(53) If An/Bni4 Cn/Dn I let us put Ei = A1+1 1 Fi = B1+1 I

G1. = Ci+1
'

Hi = Dila for 1 < i < n-1 and En = Al
'

Fn = B2. ' Gn = C
1 '

Hn = D1 . Then from the assumption

we get \(< n[Ei/Fi A Giny 1 and hence by T6

Gn/Hn ol En/Fn 1 which is impossible.
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(54) Assume Br/B .4 Al/A . Then Bi/B Bn/B Al/A AVA

B./B -4 Ai/A for all I = 1, 2, ., n . Since

A

B1/B + + B + WA = Al/A + + An/A + B/B 1 and

Bi/B Ai/A 1 by (53) we have B/B AlA which is impossible.

(55) Axioms T11 T2, Tit, and T6 reduce to Scott's axioms for FQP-

structures, if we put S2 for B in all terms of the form A/B

(56) Trivial consequence of (28). Q. E. D.

Notice that Theorem 9 is also a consequence of Definition 2

and Theorem 6, if we put A/B 4 C/D equivalent to ABxD4CDxB.

On the other hand, if we let A .11 B mean A/B .A/S1 , then

Theorem 8 becomes a consequence of Definition 3 and Theorem 9.

This interplay goes further. We can put A C+ B 4fp.t. A/S2 A/B

and. A C_ B 44.0 A/S7 1 and also A/C IL B/c 44. A/c A/Bc ;

thence we can derive the basic properties of these notions in

qualitative terms. Again, we can put A B 4:=t)A/S2 B/S2 1

A 4 B/c4.*.A/s1 WC and A/B C4=4.A/B 4 CA2 1 and handle

the qualitative (absolute) probability relation as a special case

of qualitative conditional probability relation.

Let < P > be a finite probability space and let 1°

be a partition of cl Then the function P(A/0 ) = E P(A/B)
BE

is called the global conditional probability measure of the event Al

given the experiment (partition) 1 . Note that the value of this

measure is a function and not a real number, and that the following are true:
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(i )

(ii) P(A U BAP ) = P(A/P ) + P(B/P) , if A L B 1

(iii) P(A/0) = 111% 1 if A

(iv) P(WP) = S3 P(A) 1 if VB[B P B A] 1 where

A, B ea 1 and P is a partition of n .

One might wonder if there is such an entity as a globally

conditionalized event: A/P . Such 'events' would be particularly

interesting because we know that iteration of conditionalizations

by events (...((A041) / A2) / ...) / An does not lead to anything

new, since this is equal to Ao / A. But we might hope to
1=1

get some new entities by changing the conditionalizing entities.

We know that the Boolean closure et[P] of P is a Boolean

subalgebra of a ; and, vice versa, any Boolean subalgebra

of a defines exactly one partition of a P being

just the set of atoms of 06' . (Remember that we are working

now with finite Boolean algebras.) Therefore it seems reasonable

to consider A/10 as an element of the quotient Boolean algebra

tt[P] 1 where analogously to the case of A/B (where we

relativized the set of possible outcomes to B )1 we now relativize

the set of possible events to the Boolean algebra nr[P] The

symbol A/i) then becomes a legitimate set-theoretic entity/ with

a clear probabilistic meaning:

AlP = the set of events indistinguishable from the event Al

given the events in the aglebra

by the experiment 0
aro] I generated

shall cone back to this problem in Section 3.3.

84.



The notion of a globally conditionalized event plays an important

role in advanced probability theory, and it may be of some methodological

interest to study a qualitative probability relation on these entities.

But beyond stating the problem, we shall not dig deeper into the

matter here.

We naw turn to the representation theorem for FQCP-structures.

THEOREM 10 Let <: a , > be a finite structure, where

a is a nonempty finite set; e4% is the Boolean algebra of subsets

of R / and 14 is a quaternary relation on a. Let
.1111111,M,

ao = (A : 0/a-4 A/a) .

Then < , , > is a FQCP-structure if and only if there

exists a finitely additive conditional probability measure on a

such that <: a j'IK nr P >
' 0 '

is a conditional probability

space, and for all A, C e a and B, D e

A/B 4 c/D <4.P(A/B) < p(c/D) .

too

Proof:

I. The existence of a conditional probability measure on tt

Suppose that < a , > is a NCP-structure. Let us

define m real n-dimensional vector spaces

n=lai BEao) as follows: The basis of is the

set (<((a.))) 1 B>)(11 , where as usual, the hat ftI denotes

the characteristic function of the given set, written in the form

of an n-dimensional vector:

(m
CIDI

85



< /11(a)].) IA(a)2) " n) >

where 0 = (c).)
1=1 In particular,

= < > + < C > for A B 1 and

a < > = <az, C > for AI B E ei6 and C E .

In fact, in the ordered couple < Al C > 1 C is just an index

from We put A/C for <A, C > in order to simplify

the notation.

If we take the (external) direct sum

A E etb A

of all indexed vector spaces Z1 for A E , then the vectorsA 0

in are m-tuples

< v1/A11
v2/A21

...1 v /A > , where (A.)T .M 1 1=1 0

and Ir1 for i = 11 21 m. The operations in

satisfy:

(i) < vl/Al, v2/A2, .4., Arm/A > < If
1
/ Al, w2/A25

5
wm/Am > =

= < v
1
+ w

1
/A

15
v
2
+ w2/A

2
1 .... vm + wm/A >

m

(ii) a < v ik
1' 1, v2/A2, "

where v., w. E
1 1

Obviously

vntAin > = < avi/A11 av2/A21 avm/Am >

770, ) for = 1, 2,

of 2ell'Of the form

00.1 M and a E Re

if 14/P/ is the subspace of vectorsA.

86



< 0 /A1) 0/A2) ...) OlAi ) V/A 01 C/A >
m /

where v E IP(a) I = 1, 2, .0) In

We can in a one-one way associate with the entity A/B a vector

< 0/A1, "
.1 A/B, 0/A

M
> from Ill/ and put

B

A/B C/D 44. < 0/A1l A/B, 0/Ara > < 0/A1l C/DI 0/Ara > 1

so that the problem is finally formulated in the geometric language

of vector spaces. In particular, the set of conditional entities

(A/B : A e t4% & B E orio) is 'translated' into a nonempty finite

set of vectors from 14)vwith rational coordinates with respect

to the basis

(< 0/A1l 0/Ai_11 ((m))^/Ail o/A11, , 0/As> : u E a & 1=1,21..., m).

Having done this, we are ready to use Corollary 5. In fact,

translating T4 and T6 into vector language, we get the necessary

and sufficient conditions for the existence of a linear functional

* 1,0fr-.)Re such that

A/B /a/D 44=>111(A/B) < \V(C/D)

is satisfied for all Al C e t41.= , B1 D e ; here we put

A/B for < 0/All ...1 A/B1 0/Arni> and C/D for

< o/All ...1 C/D, ...1 0/Aill > . T2 implies *(A/B) > *CNC) = 0

and T
1

forces * to be strictly positive for 6/0 In particular,

* can be normalized by defining

*(A/B)
p(A/B) -
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Theorem 9(14) gives us p(A/B) = p((AB)A/B) . Suppose A c B and

C c D ; then putting A013-4 Ceii+0.2/B4 C/D we can translate

the countably many consequences of T5 into consequences of Q
5

(Definition 2 in Section 2.4). Then, as in the case of the repre-

sentation of FAQQP-structures, we apply the theory of nets (r. Aczel,

A
G. Pickert, and F. Radcfl [351). In particular, VA B/B is

translated into Ae1BBOA ; if A cB.cC. fcr i= 1, 21

A
then LIB

1
A2/B

2
& B

1
/C

1
B2/C

2
AVC

1
4 A2/C

2
is translated

J.

into Al x )32 A2 x B, & B1 x C2=4 B2 x x C24 A2 X

Hence, as"for FAQQP-structures, there must exist a linear functional

f Via) --)Re (see the construction in the proof of Theorem 7

in Section 2.4) such that

cp(A/B) < p(C/D) 44.f(a) f() < f() f(t)

for all A, C E0t, B1 D E 2t13 such that AcB, Cc:D.

Hence for some : [0, 1] 4 [0, 1], i(q9(1/B) = if

f(B)

AcB. By the additivity of p on 14,---and of f on /)16) we

find n to be a constant mapping; and after normalization of f

it becomes even the identity mapping. Thus, for A c Bc:C ve

have p(A/C) = p(A/B) p(B/C) .

We can now collect the results of our proof in the following

conditions:

0 < cp(A/B) < 1

p(f3P) = 1 ;
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(iii) T((A U BY/C) = p(A/C) + p(B/C) 1 if Ai B ;

(iv) p(A/B) = T( (AB)"/B)

(v) p(A/C) = p(A/B) 4/C) 1 if AcBcC.

It is easy to show that (iv) & (v) imply

TUABric) = cg.'A/BC) p(B/C) .

Finally, if we put P(A/B) = p(a/B) for A e t4C, B e 1

we get the desired conditional probability measure for which

AP3 4 c/D 44i P(A/B) < P(C/D) for all AI C e tt, Bo D e . (2.14)

II. Necessity.

It is a routine matter to check that the conditions T
o

- T
6

are also necessary for the existence of a conditional probability

measure P on a . Q. E. D.

One of the basic questions of Representation Theory is the

problem of the uniqueness of the representing function. That is

to say, we would like to know the structure of the class of measures P

satisfying the representation condition (2.1)i).

Unfortunately in no structure here studied is the answer very

simple. For example, in the case of the finite qualitative probability

structures (FQP-structures), we can think of several apparently

unrelated measures that represent the ordering 4 . Given one

measure, we can construct another by, roughly speaking, moving

its values a little bit, keeping the additivity law valid, and

at the same time not violating the validity of the inequality.
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This construction can be made in uncountably many ways showing no

particular structure. Similar problems will appear with qualitative

information and entropy structures.

It is known that in atomless Boolean algebras the representing

measure is unique. On the other hand, atomless Boolean algebras

are not the most important ones.

The problem of uniqueness in general nonlinear measurement

structures certainly deserves some further study.

Another problem is to find those conditions that must be ,

imposed on the structure <:g2 lee, , Jj> in order to find

a probability measure P on .r4; such that

( 1) A B ,N13(A) < P(B) ;

(ii) A IL B41.13(AB) = P(A) P(B) 1 where Al B e .

Yet another class of questions arises, when we want to represent

the various possible combinations of the 'relations' A ,4 B1 A j B1

A/B=4 C/D, A/C 11. B/C, A qf WC, A/C c_ B/C1 etc., by an adequate

probability measure.

These problems are outside of the scope of this work.

2.7. Additively Semiordered Qualitative Conditional Probability

Structures

In this section the solution of problem (P)) will be discussed.

In particular, the basic properties of the quaternary relation

will be presented. The intended interpretation of the formula

A/B >.-C/D will be: event A given event B is definitely more probable
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than event C given event D. If we put A/B C/D 4=4

4=3> [A/B -C/D v -1C/D > -A/B] then an equivalent structure

is obtained.

Since (P4) is a generalization of (P3) and (P2), one may expect

that the properties of }- will resemble somewhat the properties

of 4 in problem (P3) and of }- in problem (P2). In addition,

the proof of the representation theorem will be a combination of

proof techniques used for representation theorems of semiordered

and ccnditional probability structures.

The relation >- called the semiordered qualitative conditional

probability relation is at least a semiorder. The additional

properties are dictated by the probabilistic interpretation.

Perhaps we should point out that some of the notions discussed

in Section 2.6 have.their 'semiorder' counterparts. For instance,

A C: B 4.4 A/B AA/ 1 A Cs B 4=:.A/S/ >A/B ( A a and B )

are the semiordered relevance relations.

We shall not try to speculate about the use of these notions.

Maybe they will have some importance in a rather general qualitative

theory of causality.

Much recent work in inductive logic and methodology of science

has been concerned with rules of acceptance or re'ection (of scientific

theories). The simplest rule studied allows a hypothesis or theory,

represented by the event A, to be accepted iff P(A) > 1 - 6

(0 < E < 1/2), or in the conditional version, P(A/B) > 1 -6
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In terms of FASQB-structures or semiordered qualitative conditional

probability structures this rule gets a more polished and symmetric

form:

(i) A is accepted .0. A ;

A is rejected 4.,1% A 0 ;

(ii) A is accepted given B 4*>.A/B SIA/ ;

A is rejected given B 4=/B .

Since is not transitive, one cannot hope to describe too

much with it. The set of all accepted events does not form even

a filter (it is true that A a & A. c: B =0.B r.:-; a , but

lz-.:a&B.=---ft = .AB r=la is false) which is an obviaus algebraic

requirement of a deductive system; The only possible way to remove

this weakness while retaining the rule, is to think of tt as a

kind of lattice rather than a Boolean algebra; in this lattice

will still have the probabilistic interpretation, but the rep-

resentation theorem for this new structure may fail. After all,

the acceptance and rejection predicates are supposed to be meant

for (empirical) theories; and the set of these forms at best a

Brouwerian algebra. Moreover, we hardly would want to consider

numerical probabilities for evaluating the degree of acceptance,

since we defined the notions of acceptance and rejection in terms

of inequalities. Thus, considering a as a lattice and as a

probabilistic indifference relation, we may conceivably get a

deductive system of accepted theories. But we shall not deal
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further with this rather delicate philosophical problem. In general,

threshold-type statements are always rather weak from the point of

view of their content.

We turn now to the definition of FASQCP-structures.

DEFINITION 4 A triple < a 1 r4, > is a finitely additive

semiordered qualitative conditional probability structure (FASQCP-

structure) iff the following axioms are satisfied when all variables

run over t'4!: ; provided that, in the formula A/B >.-C/D 1 the

events B and D are elements of ao = (A E a : "pa - A/a) :

0
a is a nonempty finite set; a is the Boolean algebra of

subsets of a , and >- is a quaternary relation on t3dt ;

R
1

Q/Q }-NQ ;

R2 -1 A/B -A/B ;

R3 A/B Al/B ;

R4 00 >- B/E =4* C/D A/E 1 if A c B

[Ak n Ai }- Bf3R5
0 < k < n

A./An }- B./B for all permutations 13
1 00 <i<ni 0<i< n

on (11 2, odroy P) y if
+1

/ Bi B /BO
0<i<k 0<i< k

for k = 1, 2, . otty n-1
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R
6

n[Ai/Bi. Ci/Di & Ei/Fi GVHI] =110

.[An/Bn CilDn.t.Erpn >- GniHn] if

A A

1
[ GA./B. + ./H.] = E [C./D. + E./F.] ;

i < n
1 1 1

i < n

Remarks:

(i) A/B C/D is of course equivalent to

[A/B E/F 44) C/D E/F] where A/B - C/D
MEIF

(ii

means A/B C/D & C/D A/B ; several other notions

can be introduced as in the case of FASQP-structures.

Theassumption-ikla/RB..-n Bi / BO (2.15)
0 <i<k 0 <i< k

for k = 1, 2, n-1 in axiom R5 is a little bit strong,

since E + P(Bi/Ci) > P(VBiCi) is enough, too. Because

there is no way of representing a formula 8 + P(A/B) = P(C/D)

in terms of we have to leave out the case of equality.

(iii) Axioms R
1

- R6 are just the combinations of axiams for

FASQP-structures and FQCP-structures. Certain axioms are given

also by Suppes [16]. As expected, axiom R6 is the qualitative

version of the addition law, whereas R5 provides the multiplication

law. Naturally, all important properties of the relation

are hidden in these two axioms.



THEOREM 11 let < a , M, > be a FASQCP-structure. Then
.... ....

the following formulas are valid for all variables running over a ,

provided that in A/13 1 B is restricted to a_ 0

(1) Ai/B1 > Ci/Di & A2/B2 }-- C2/D2- [A1/B1>- C2/D2 v A2/B2 }- C1/D11

(2) A1/131 >- C/D & C/D VI' [A1/131 A2/B2 te A2/B2 E/F] ;

(3) A/B ..- C/D & E/B }- B/D --.A U E/13 ?--C U GA 1 if A i E ;

(4) A U E/B C U G/D =go- [A/B ?--C/D E/B '... G/D] 1 if C

(5) A/B -C/D-4t*--olD -.-A7B ;

(6) A c B ---z4 -1 A/C -B/C ;

(7) A/B C/D & C/D E/F .. A/B E/F ;

(8) --, A/B NC A/B >-95/C ;

(9) \-il n[Ai./Bi - Ci/Di.] .4- Cn/Dn An/Bn 1 if

Z Ai/B. . Z
3. 3.

i < n 1 i < n

i

(10) A/B >.- C/D44.- a/Q >-- C/D 1 if B c A ;

(11) WA .-NB ;

(12) C/D A/13 CA >,-- rh/F ;

(13) A1/131C1 .- A2/B2C2 & B1/01 }- B2/C2 A1131/C1 }- A2B2/C2

--) A2/B2C2 }- B2/C2 ;
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A1/B1C1 B2/C2 & B1/C1 A2/B2C2=46-
1
/C

1
A B /C

1. 2 2 2 1

if n 72/B2C2 > B2/C2 ;

(15) A/B>.-C/Dv=kAUE/B>--CUF/D, if FEE&EiA;

The proof goes along the same lines as the proof of Theorems 14.

and 9 above.

Note that all 'addition laws' go through smoothly (remember

that < a, > is a finitely additive semiordered structure),

whereas the 'multiplication laws' sometimes fail. For instance,

there is no simple counterpart of the theorem

A1/01 A2/02 [A.i/B1 A2/B24. B2/02 4 B1/01] ,

if A. c B. c C. (i = 1, 2) 1 which is valid for qualitative

conditional probability structures. If A x B x D denotes

the semiorder version of the quadratic qualitative probability

relation, then, as one can check easily, the transformation

A1/B1 A2/B2'"*A1 x A2 x B2 for A. c B. (i = 1, 2)

is valid, but not conversely: Therefore we cannot hope to give a

representation theorem in a complete form. The inequality

P(A/B) > P(C/D) + 6 (0 < < 1) behaves with respect to

multiplication quite irregularly. For example, the standard

cancellation law: AxB4CxD&CxE4FxBa.+AxE-4FxD
is valid only under very special conditions.
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More specifically, we are able to show the following theorem:

THEOREM 12 (Representation theorem) Let <:g 1 tA: 1 >m- > be a

finite structure, where g is a nonempty finite set; tt. is the

Boolean algebra of subsets of g and is a quaternary relation

on et ; let := (A : --1 Na .

Then < g > is a FASQCP-structure if and only if there

exists a finitely additive probability measure P on a and a
WI/1=p

real nuMber 6 such that all variables run over a and the

event B in A/B is restricted to tt
/

the following conditions
0

are satisfied:

A/B P(A/B) > P(C/D) + 6 and 0 < < 1 ;

= 1 ;

0 < P(A/B) < 1

P(A U B/C) = P(A/C) + P(B/C) 1 if A B ;

P(AB/B) = P(A/B)

> P(B, B.) + 6 ]

0 Xt< nrP(Ak / /1\ Ai)
0 < i < k Pk 0 < i < 0

'k

==4*P( (\ A. / A
0

) > P( /(..\ B p/ B
o
) + E,

0 < i < n
1 0 <i<ni

for all permutations 0 on (1, 2, n) if

P (5-31. 0.1/ Bi) < P ( B. B0) + 6
0 0 < i < k

for all k = 1, 2, ..., n-1 .
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The proof is a combination of the proofs of Theorems 5 and 10.

From a measurement-theoretic viewpoint FASQCP-structures

are quite complicated. We can say nothing about the uniqueness

of the representing measure, except that sme periodic transformations

(with period 6 ) should lead to new measures, satisfying conditions

(1) - (6) in Theorem 12.

In closing this chapter, we can claim that the methodology

described in Section 1.4 has turned out to be very useful in proving

all the basic measurement-theoretic theorems about probabilistic

relational structures. In the next two chapters we shall present

some further applications of this method.

3. APPLICATIONS TO INFORMATION AND ENTROPY STRUCTURES

3.1. Recent Developments in Axiomatic Information Theory

Information theory deals with the mathematical properties of

communication models, which are usually defined in terms of concepts

like channel, source, information, entropy, capacity, code, and

which satisfy certain conditions and axioms.

Our knowledge in this field has expanded prodigiously since

C. E. Shannon gave in 1948 the first sufficiently general definition

of information and entropy. An indication of this expansion can

be gained from the survey and extensive bibliography in R. S. Varma

and P. Nath [38]. In particular, the last ten years have seen a

considerable interest in the abstract axiomatic treatment of the

concepts of information and entropy.
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Shannon's original axioms for the entropy measure have been

replaced several times sUbsequently by weaker conditions (see

Fadeev [39], Khinchin [40], TVeberg [41], Kendall [42], and others).

The weakest set of axioms known seems to be that given by Lee [43].

Renyi [44], on the other hand, has extended the notion of

entropy by using the concept of a generalized probability distribution.

The above characterizations of entropy all involve essentially

probabilistic notions.

Ingarden and Urbanik [45, 46, 47], and de Feriet and Forte [48],

have given axiomatic definitions of entropy and information measures

without using probability measures. Similarly Kolmogorov [49, 50]

has shown that the basic information-theoretic concepts can be

formulated without recorse to probability theory.

Ingarden and Urbanik need to assume for their definition of

entropy a sufficiently large pseudometric space of finite Boolean

rings, in order to be able to state the continuity of the entropy

measure. On the other hand, Kolmogorav uses the concepts of recursive

function and random sequence. Still another approach is known in

coding theory.

Quite recently, several information-theorists have tried to

construct the information-theoretic notions by using techniques

from statistical decision theory. For example, Belis and Guiasu

[51] propose a notion of a 'qualitative-quantitative information

measure,' defined in terms of utility. The idea is simply the

following: Given a probability space < ?4"-, P > they
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introduce, besides the probability measure P on the algebra of

events a utility function U

element of a partition j3 of g/

which assigns to each

a non-negative real nuMber:

the entropy measure H of the partition /9 is then given by

11(6)) E u(A) p(A) log2P(A) .

AE

Weiss [52] gives an axiomatic system for subjective information

which is almost identical with the theories of probability and

utility of Savage [6] and Pratt, Raiffa and Schlaifer [53].

In a related field, that of semantic information theory (in

the sense of Bar-Hillel and Carnap [54]), there have also been

advances (see especially Hintikka [55, 56]).

As can be seen even from this cursory review of recent develop-

ments, there is available an immense wealth of axiomatic material

dealing with purely logical and foundational aspects of information

theory. The above-mentioned foundational attempts are all directed

in the main towards axiomatizing the basic information-theoretic

notions in the form of functional equations. In this paper another

approach is proposed. We shall advocate, instead of the ana]ltic

approach, an algebraic approach in terms of relational structures.

The latter approach is more relevant to measurement or, generally,

epistemic aspects of information, unlike the former which tackles

the a Nriori, or ontological aspects of information-theoretic

problems.
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In fact, the main purpose of this chapter is to give axiomatic

definitions of the concepts of qualitative information and qualitative

entropy structure, and to study some of their basic properties.

The chapter culminates in proving certain representation theorems

which elucidate the relations these notions bear to the standard

concepts of information and entropy.

3.2. Mbtivations for Basic Notions of Information Theory

The standard notion of information is introduced usually in

order to answer the following somewhat abstract question: How much

information do we get about a point w e S/ from the news that co

belongs to a subset A of SI that is w E A and Ac:S/ ?

it is rather natural to assume that the answer should depend on,

and only on, the size of A, that is to say, on P(A)1 where P

ls a standard probability measure on the Boolean algebra a of

slibsets of SI In other words, the answer should be given in

terms of a real-valued function I defined on the unit interval

[0, 1] . Hence, the amount of information conveyed by the statement

co E A will be IcP(A) or in a simpler notation, I(A) . It

is also natural to require I to be non-negative and continuous

on [0, 1] . Now, if we are given two independent experiments

which are described by statements w E A and w E B (Al B Ea)

E a), then it is reasonable to expect that the amount of information

of the experiment described by weA& u.)eB, that is weAnB,

will be the sum of the amounts of information of the experiments

taken separately.
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Given a probability space A =<S2 P> 2 let ALB

mean that the experiments with outcomes w e A and w e B are

probabilistically independent (Al B e ; then we can collect

our previous ideas in the following assumptions:

(i) The diagram

a
+00]

(3.1)

is commutative, that is, IcP = Ip and I is continuous;

(ii) A I B Ip(A n B) = I(A) + I(B) 1 if Al B E .

It is a very well-known fact that the only real function Ip

which satisfies the conditions (3.1) is I(A) = - a log P(A)

where a is an arbitrary positive real constant. It is a matter

of convention to choose a unit for measurement of the amount of

information which makes a = 1 .

Let us now assume that we are given several experiments in

the form of a system of mutually exclusive and collectively ex-

haustive events, 0 = tA
i 1
3.

1 '

4)
where

=

tJ Ai = 0 1 and A. n A. = ie for i j and i, j < m *) .j1=1

*)
'Variables i, j, k, I will always run over the set of
positive natural numbers (1, 2, 3, )
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What we may well ask is the average amount of information conveyed

by the system of experiments P

Since we are assuming the probabilistic frame A there is

nothing more natural than to take the average amount of information,

called the entropy H 1 to be the expected value of the amount of

information:

Hp(P) = E P(A) I(A) , where I(A) = -log2P(A) . (3.2)

Aci)

The entropy measure H is usually characterized by a system of

functional equations using more or less plausible ideas about the

properties of H.

Let IP be the set of all possible partitions of the basic

set of elementary events a of the structure A The elements

of IP will be called for simplicity experiments for pep)

where A is an event, representing a possible realization

of the experiment dp . Then the functional equations for H have

the following form:

(i) The diagram

/< PI P, O.., P >
( 3. 3)

[0,1]x [011]x x [0,1]

is commutative, that is, H < PI P, P > = Hp y and

H is continuous;
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(ii) H([AI I)) = 1 if P(A) = P(1) ;

(iii) H([B I A n B, Afl B]e ) = 11( 0) + p(B) HuA, I)) if A I B

here AL, B E tt and [B I A n 13, A n B]dl is the experiment

which is the result of replacing B in the partition P
by two disjoint events AnB2 anB. It is assumed,

of course, that B E d)

It was Fadeev [39] who showed, using ErdOs' famous number-

theoretic lemma dbout additive arithmetic functions (see ErdOis [57])

that the only function Hp which satisfies the conditions (3.3)

has the form (3.2).

What has been said so far is pretty standard and well known.

In the sequel we shall point out a different and probably new ap-

proach. Instead of constructing functional equations and by proving

the validity of the formula (3.2) and showing that they adequately

mirror our ideas about the concepts of information and entropy,

we propose here to approach the problem qualitatively.

Following de Finetti, Savage [6], and others, we shall assume

that our probabilistic frame is a qualitative probability structure

(FQP-structure) <: Ot, > , where AA B means that the

event A is not more probable that the event B (A, B tt) .

In the general case there is no need to associate the binary relation-4

with any sUbjectivist interpretation of probability.

The question arises whether we can introduce a binary relationik

on the set of experiments p in such a way that this relation will

express satisfactorily our intuitions and experiences about the



notion of entropy. In other words, we would like to say under what

conditions on 14 we have:

Experiment pl does not have more entropy

than the experiment i)
2

In a way this question belongs to measurement theory. (see Suppes

and Zinnes [58]). When we study any property of a given family of

empirical objects, or a relation among these dbjects, one of the

basic epistemological problems is to find under what conditions

the given property or relation is measurable; more specifically,

what are the necessary and sufficient conditions for there to exist

a real valued function on the family of empirical dbjects whose

range is a homamorphic image of the set of empirical dbjects in

accordance with the given property or relation?

In the case of entropy this amounts to knowing the restrictions

to be imposed on in order that Hp of (3.2) exists and further-

more satisfies the following homomorphism condition:

01 4 12 < HP( < HP( (32) 5 if 6) lip2
(34)

It is a trivial matter to notice that the relation 4: has to

be reflexive, transitive, connected, and antisymmetric with respect

to the relation ", (defined by 614 92 d7L-4 632 &

if 1)1, E P ). In other words, 1. has at least to be a

linear ordering modulo the relation But these trivial assump-

tions are obviously insufficient to guarantee the existence of so

complicated a function as Hp
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Likewise we can introduce a binary relation 4° on the Boolean

algebra 1 and consider the intended interpretation

A k B 44 Event A does not convey more information than event B.

Again, we shall try to formulate the conditions on 4' which allow

us to find an information function Ip (Hp) satisfying both (3.1),

and the following homomorphism condition:

A 40 B Ip(A) < I(B) 1 if Al B e

Hence our prcblem is to discover some conditions which, though

expressible in terms of (.1k ) only, allow us to find a function Ip

(Bp) satisfying (3.1), (3.5) {(3.3), (3.4)).

This approach is interesting not only theoretically but also from

the point of view of applications. In social, behavioral, economic, and

biological sciences there is quite often no plausible way of assigning

probabilities to events. But the subject or system in question may be

pretty well able to order the events according to their probabilities,

informations, or entropies in a certain qualitative sense.

Of course, it is an empirical problem whether the qualitative

probability, information, or entropy determined by the given subject

or system then actually satisfies the required axioms. But in any

case, the qualitative approach gives the measurability conditions

for the analyzed probabilistic or information-theoretic property.

3.3. Basic Operations on the Set of Probabilistic Experiments

In Section 3.2 we stated that the main algebraic entity to be

used in the definition of an entropy structure is the partition

of the set of elementary events a We decided to call partitions

experiments and the set of all possible experiments over a has been
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denoted by p . For technical reasons we shall assume sometimes

that every partition contains the impossible event .

We can, alternatively, analyze qualitative entropy in terms

of Boolean algebras generated by experiments (partitions of the

sample space). Experiments are the s ts of atams of these Boolean

algebras, and there is therefore a one-one correspondence between

them. Formally we get nothing new.

If we are given-two partitions ,
1

we can define
w 2

the so-called finer-than relation ( ) between them as follows:

(i3:2 4:441 yl (P2(A c B) (3.6)

An equivalent definition would be:

from fl

iimmlV (A e JP12..) A = B ) for some B.'s

i < k

i < k .

We have in particular,

(0, 'AI ATI Aga, ABC) (15, T1 AEI AB) a (0, A, A) .

Now, given a relation on a set, it is natural to ask whether

it is possible to define same kind of lattice operations induced

by this relation. The answer here is positive The first operaiion

of interest is called the product of experiments:
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or, more generally,

TT
< n

p
V 3.

(Af1B:Ae ó&Be 72) (6, ) (37)

,r1 A Vi n (Ai 6 )
i < n 410=1,

is the greatest experiment which is finer than both

and
P'

that is,
2

(i) 1 2 1

P

1 V2 P2

& P (P2 Pi
Obviously Pig P2.4.=.1*)9 j9

1 2 1

The dual operation is called the sum of experiments and is

defined as follows:

+ = T--T [4()) , where 1-7 denotes the standard1 2

J92 CI: a'

generalization of the operation to sets of experiments. A

more concrete definition is the following:

1
i A

2
i

i < n
1

A
n

a maximal

chain of overlapping events in
t.1

U where Ai Aj
2
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0 is the smallest experiment coarser than both di
2

and that is,

( )

(ii) Ace & /0 + cE p

Again it is clear that PIE e2.,==>ri 4 4
P2

The partition e= (0, , is called the maximal experiment

and the partition a= : U (0) is called the minimal

experiment. Clearly 62,a IQ Gq2- for any Pe . Equally

straightforward are

P. 0/ = P and p + = a) ,

.ce and +a = p .

The total number of experiments en over a finite set ft

wlth n elements is given by the following recursive formula:

e
0

= 1 & e
n+1

= E ( )e .

1=0

The reader can easily check that the structure

Rtr, (6 + a > satisfies the lattice axioms._

Unfortunately, it is not a Boolean algebra, so there is no hope

of getting any useful entropy measure on it without further assumptions.

The help will come from the independent relation jj on experiments.

The structure < ,p , . in which the product and sum

of experiments are defined will be called the algebra of experiments
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over the set of elementary events a The reader may be familiar

with the following chain of isomorphisms:

a Lattice of equivalence relations on a .s Lattice of

complete Boolean slibalgebras of a a Lattice of subgroups

of a finite group a Lattice of subgraphs of a topological

graph a Finite geometric system of lines and pencils a Lattice

of modal operators on rt satisfying the modal axiom system S
5.

Any one of these structures could be used as the underlying

algebraic structure of the entropy measure. For example, in

graph representation, the entropy measure could be viewed also

as a measure of the relative complexity of graphs:

He(.) = -ZooP(A) log2P(A) p where P(A) = 41. 2 A e

and P is the partition of the set of vertices V of the graph

In the same way we can talk about the complexity of a group. By

the complexity of a mathematical structure we mean here a function

of all the elements of a (complete) set of invariants of the given

structure.

3.4. Independent Experiments

DEFINITION 5 Let (E4 = <: a, a , .4 > be a FANP-structure
"WNW MII

and let < IF, E> be the algebra of experiments over n .
.11.1M

Then we shall say that two experiments are independent, pi II. p2 p

if and only if

Ae P
1

11&Be if) all+A B , for all A, B .
2
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Some of the basic properties of independent experiments are

stated in the following theorem.

THEOREM 13 If < Q, a 1 -4 > is a FAQQP-structure modulo

and < p 1 e:> is the algebra of experiments over 42 then

the following formulas are valid for all f), P2 4:19

(8)

( 9 )

(10)

jq2 P= ;

gui- 4==> P2 IL ;

11-
1'2 & P2 E P1 r3 ;

el;
Pi 1 P2 & (1 P2 P2
pRp. (I) 4. f2

A e ,71 B E ;

it f2 P3 & 1; If721 er3>( 4.11 f2 P2 11. f3) ;

IlL
1.21 & fit /22 71 (1 1* f24-*

11- si22 (P2==t-i72=

if AUB. 1

13)

The proof is a simple application of Theorem 6. The assumption

that <Q, a -%& > is a FAQQP-structure is inessential. We

could as well assume any FQCP-structure or even any other structure

in which the relation 11. is defined for events.

The reader will notice that the relation
JJ.,

on P is not

unlike the disjointness relation j on a In particular,
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-A- =n(B : AUB=Q& At B) . If we define similarly:

=
fo.a

(a) and

pia
Pi A te2 (751 72)- then

we get a Boolean algebra of those experiments, for which la

exists. If 7 exists, then it is uniquely. determined, as Tee

can easily check using Theorem 13(9). Analogously,

is uniquely determined, provided that it exists.

It is unfortunate that the independence relation on

generates a Boolean algebra which is only a proper subset of the

lattice HP . We would hardly want to rule out those experiments

which have no complements according to definition given above;

for the entropy measure Hp is defined on the whole set p
On the other hand, it is highly desirable to have on 111 a richer

structure than a lattice.

In the following chapter we shall make some use of the 'partial'

PI A

Boolean algebra <p,,,,
Theorem of qualitative entropy structures.

in the Representation

3.5. Qualitative Entropy Structures

As already mentioned in Section 3.2, we shall develop here a

qualitative theory of entropy based on qualitative EL-212212illa

theory. The only primitive notions used will be the qualitative

entropy relation k and the independence relation

relations over ip the set of experiments.

112

, both



In this chapter we shall use the following notation:

If A E a, the experiment (A, a) is called a Bernoulli

experiment; the variables 6, 4, 621 ... will run over Bernoulli

experiments. Familiar enough is the fact that each experiment

p can be written as a product T--T where the family
i < n

(41313i < n
is so chosen that no subset of it is sufficient for

the job. This representation, unfortunately, is not unique.

EXperiment g9 is called (locally) equiprobable if and only if

VA, B E a (Al B E -=1:. B) . The variables for equiprobable

experiments will be

We call two experiments equivalent modulo in syMbols,

1)1 0°2 I
if and only if P2 = [B11 Li] ([B2I A21 ([Bri I An] ff1)...)),

where \91
n i
(A B. & B. E and the right-hand side of the

i < 11
equation is an experiment. The relation on is clearly an

equivalence relation.

We define as before:

024=>(6i. 62& P2411)

A1324=t)-1 -*

= ((w): E )

Let e. 8010 P24*. ao2 84 /91 & Pi!

let eep : 3 e p2{ e P10 ; and let 00 enumerate
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5 so that = GO.).
< k

Then we define:

O' < d
1,

d
21 " dk > , where, if 0= 06' (i (10 2, k))=

then d. = 1 , and Vjhi & 1 < i < k(di = 0) ; otherwise

g . Letfor some = < 0, 00 0 >1 2 5"

be the zero vector. In other words,
1 I ) y where

is the basis of the k-dimensional vector space 7J1E1 ) . Naw

we are ready for the following definition:

111,

Mt

DEFINITION 6 Let = <:a5a, > be a FAQQP-structure

or a FQCP-structure. Then the quadruple < fl, , , I> is

said to be a finite qualitative quasi-entropy structure (FQQE-011s

structure) over c) if and only if the follawing conditions are

satisfied for all variables running over 1-3 .

E
0

Fp is the algebra of finite experiments over a

the probabilistic independence relation on

a binary relation on g2D

El el P2 '24 P1 ;

E
2

E3 P1 P2
;

E5

(1)

P ,

;IL denotes

and 4: is

\dn( Pi .4. CY 44an 5 if E 0/ a i
< n 1 i < n

Remarks:

In axiom E
5

, the formula concerning characteristic functions can

easily be translated into a system of identities among experiments.
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(ii) There is no doubt that the axioms E - E
5
are consistent

0

and independent. The crucial axioms are E4 and E5. Axiams E
1

and E
2
give the so-called normalization conditions, whereas E

3

forces us to consider equiprdbable classes of events, rather

than events themselves.

(iii) The definition of an infinite qualitative quasi-entruy

structure for purposes of representation by an entropy measure

on 03 does not cause any fundamental difficulties. The FAQQP-

structure or the FQCP-structure must of course be replaced

by an infinite one; otherwise, we proceed as in the finite

case. In fact, the axioms are prodigiously complicated and

far less intuitive than those given dbove. This case will

be omitted here.

(iv) In axiom E2, we must assume the existence of an equiprobable

experiment for we need this axiam to show that the

entropy measure H is strictly positive for at least one

element from . An alternative axiom might be

but this would rule out some elementary algebras FI)

(v) Note that the (global) entropy relation rk depends on two

factors: on the underlying algebra of experiments and the

independence relation
IL defined on this algebra (this relation

is hidden in axiam E5). We do not give here the link between

the FQQE-structure (macro-structure) and the FAQQP-structure

(micro-structure).
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The following easy theorem displays the content of the above

definition:

THEOREM 14 Let < a, p i7, i > be a FWE-structure or

a FQCP-structure. Then for all variables running over p and

Al B1 C et :

(1) 0' ) ,4.1 ) ;

(2) (P) u P ..... 13;

(3) if14 P2 & e2 4vir34" ii 14' P3 ;

(4)

(5) ... is an equivalence relation;

(6)

(7) ir 14. (Ay -A-) 46 (Al TB, a)4 . (A, 11, ac, ABc) 4. ...4- a ;
(8) el p2 4-* 4. 1 f - tp2 .ip , if tf) i fv P2 ;

al & P2 4.6772.-o. or, . /72 .4.- eil . a2 y if

P1 i P2 & 4211 412 ;

(10) Pi' P2 & 4 tr3 vi'l,--i% PI P3 1" )4 1 if

P3 i Pll P2 ;

TT ei -6' IT z & ei I & ai I ;
i. < n i < n_
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(12) Vi<n i 3.3.<n i < n
if(A B.) (A.)

(A ). (B.)
.413.3.<n' 3.1<n

The empirical content of Theorem 14 should be clear.

THEOREM 15 (Representation Theorem) Let < ft, p , I>
be a structure, where ft is a nonempty finite set; p is the

set of partitions of ft ; 2. is the independence relation on Fp

in the sense of Definition 5; and. is a binary relation

on P .

Then < ft, P > is a FQQE-structure if and only if

there exists a quasi-entropy function H p ----)Re satisfying

the following conditions for all P 1 c p
2

(i) 1D24.=.>Eq < H( 02) ;

(ii)
11- P2. (P2) o°2.) P2)

(iii) Pi a -401-1( (2) < PI) ;

(iv) li(r) = 0

(v) H(6) = 1 , if

Proof: There is no question of the conditions' not being necessary,

and we prove here only their sufficiency.

I.Rt < ft, p > be a FQQ,E-structure over 0 . Let

VIB,) be the k-dimensional vector space, described just before

Definition 6. We can obviously make p a finite subset of ln
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A
by assigning to each a) E U a vector 64 where

(P10 P2)^ = e
1

4- iP
2

In a similar way -4 can be

represented on VI IL) . Having done this, we are ready to

use Corollary 5 taking advantage of ;4., E51 and E3 to switch to

quotient structures. The corollary answers us that there is a

linear functional * : 7,63) --->Re and thus another

functional T 1 such that the conditions MI (ii),

and (iv) of Theorem 15 are satisfied by T . El forces T to be

non-negative on 1173 and also to satisfy (iii).

Finally, E2 gives T(CA, -A)) > 0 if E E . Hence,

by putting

H(p)
a))

we get the desired quasi-entropy function. Q. E. D.

Condition (iii) in Theorem 15 expresses the most important

property of the entropy measure, namely, its additivity. Unfortunately,

this property is much weaker than (iii) in (3.3), Section 3.2. It

is trivial to show that there are many functions besides (3.2) which

satisfy the above conditions. This lack of specificity explains

the 'quasi-' prefix.

It is well known that the conditions (i) - (v) in Theorem 15

together with the condition

H(0) z f P(A) f : [0, 11 4Re = (3.8)
AE
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for some f continuous, are enough to specify an entropy measure

Hp in the form (3.2).

In order to guarantee the existence of a continuous function f,

satisfying (3.8), we have further to restrict -4 and to add

more 'interacting' conditions between and 14

The following necessary conditions are obvious candidates:

(1) A -4 B 44+ (A, -A) -* (13, T3) , if Al B E ;

(2) A-4 B 11 4. (A, , if -f^,E4A,B;

(3) C [BIABI-A1]3 [BICB1-aB] S ) 1 if 0-4 B E

B, C=4E-,-E-1 0-ZBI 1 All B, C;

(4) B C e=5 [BI ABITB]0 14: [CI ACI-AC]O if B, C E d)

ALB, C 1

(5) P--;.6 if iPi = 161.

It would be incredible if these conditions were sufficient.

At least three axioms or axiom schemas similar to E5 are needed

to guarantee the existence of the sum, multiplication, and loga-

rithm functions in (3.2). Over and above that we need the quali-

tative probability axioms, which we can assume to be given, of course.

Given these axicms, our representation theorem would also

guarantee the existence of a probability measure P such that in

addition to (i) (v) in Theorem 15 we would have:

(vi) H(0) + H((A, .-A)) P(B) = H([BIAB, -ABW) if B E

and A 11 B, A ;

*)See the notation in (3.3)0 Section 3.2.
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(vii) A.4 B 4P(A) < P(B) ;

(viii) A it Bst=>P(A fl B) = P(A) P(B) ;

4Z=
B)B(A EVA, p &BE Aa()2, 2. .(ix) 4. IL P2 1

It seems to be an open problem to specify the relationship

between the macro- and micro-structures under the given very

restrictive finite conditions. On the other hand, in the next

section we shall show how easy it is to give 'representations'

when we have more topological properties available.

FQQE-structures characterize the macro-properties of the

entropy from qualitative point of view. The reader may have

noticed the following striking formal similarity between the con-

ditional entropy measure and the (absolute) probability measure:

(1)
4(°2.

IL
se2 ty P2) = H(

At B P(A B) = P(A)

(2) H( Pi (p2) = H(p2) p2) ,

P(A U B) = P(B) + P(A - B) 1

(3) 0 < H( < H( . p2) < H( fa) + H( p2)

0 < P(A) < P(A U B) < P(A) + P(B) .

This rather primitive one-one correspondence between

pi (72, fa/ p2 and AlB, AUB,

contains certainly some heuristic anticipation of a deeper rela-

tionship between the macro- and micro-structures: < H >

and < n, et, P > . One can see also why the lattice operation +
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in p has so little use in entropy theory. The more interesting

operation on P would be the composition of two experiments,

PlA P2 defined in Section 3.3. The only problem here is

that < F3 A > cannot be embedded into a Boolean

algebra.

We shall now turn to the problem of conditional entropy.

Another interesting similarity between the conditional entropy

and (conditional) probability is the following:

(1) 11( /02) = 11( el e2) - 1.1( 62) ,

P(A/B) = P(AB)/P(B), P(B) > 0 1

(2) el It 6324>11( e2) )

A B44..P(A/B) = P(A/Q) if P(B) > 0

(3) H(e1/ e2 P3) = II(P1 1)2/ P3) - (2/1P3)

P(A/BC) = P(AB/C) P(B/C) 1 if P(BC) P(C) > 0 .

We shall consider these similarities as a heuristic guide to

further developments of entropy structures. One can consider

the entity P1/ P2 to be a partition (experiment) in

vol[P2] Then P/ g7
2

is the set of experiments
1

indistinguishable from fl 1 given

As in the case of probability structures (see Section 2.4,

Definition 2) we shall study a kind of composition of entropy

structures. In particular, given the algebra of experiments

< Q1 PIE >1 we shall studyabinary relation 4 on PX P
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and a special representation function * : 411e which,

among other things, satisfies

< ' e2 > < 611 412>46-1 ( "1) If(

(1)
< *(6191) 1142)

all P 12 62 4? E Pl' 15 2

rialere are several important partial interpretations of this

relation: First of all, the qualitative conditional quasi-entropy

relation hopefully can be defined as

IV P24' 41/ < P25 a2 >4 < Ql

Naturally, we can put

r24'>< > P25 cr'>

and then the probabilistic independence relation 2. on experiments

is given by

11- P241m< el) e2> < P21 19/ >

It is clear that we could also talk about positive and negative

dependence notions similar to those introduced fcr probabilities.

The structure < Px1P1.4, > also has independent importance

in algebraic measurement theory, where the atomic formula

< 1
1)2 < 69:2 may be interpreted as a comparison

of two empirical campositions of certain physical entities, which

is representable by an inequality between the sum of magnitudes

of a linear physical quantity. In this paper we shall be interested
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only in the entropy-interpretation.

DKFINITION 7 Let (131 = < a, et > be a FAQQ13-structure.

Then the quadruple < P , , > s said to be a finite

qualitative quasi-entropy difference structure (FQQED-structure)

over G if and only if the following conditions are satisfied

for all variables running over

0
113 is the algebra of finite experiments over c jj is

the probabilistic independence relation on f) and 14 is a

relation on
-311

.111=

D
1

D
2 < 0, lf) > < Ig , P > y if

p < Qv 422 >4 < Pi, P2 > ;
D3 <

15 P2 > 4 < cil, (i2 > vf

D
4 < 115 62 > 4 < al, 622 > < Q21 ("1 > 4 < P2, Pi > ;

D
5 Vi < n(< fi' ai > -4 < Ri' (fi >) < YD.' den > 4 < l'n'

if E IP = E
&

E (3 E
1

i < n i < n i < n i < n

where a i/
y. for

have the same meaning as in Definition 6.

= 11 21 041, n

The remarks to Definition 6 are relevant also to Definition 7.

The content of the definition should be clear; therefore we proceed

to Theorem 16.
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THEOREM 16 (Representation Theorem) Let < p 14 jj>
be a structure, where S2 is a nonempty finite set; p is the

set of partitions of 2 ; jj, is the independence relation on

in the sense of the Definition 5; and 24 is a relation on

Then <: al 1 L> is a FQQED-structure if and only if

there exists a quasi-entropy function H :P---÷Re satisfying

the following conditions for all PI, 61, (4, 6/2 E :

( i) < > < (911 (12 P1) H( r2) < H( 01)
(ii) H satisfies conditions (ii) - (v) of Theorem 15.

H(C.22)

Proof: The necessity is obvious. For sufficiency, let < , jj>
be a FQQED-structure over ID Let VIHEI ) be the k-dimensional

vector space, described in the proof of Theorem 15. We can transform

into a finite subset of the (external) direct sum

1)1 10 0 1)1113) by assigning to each pair < > a

vector g) 0) a e BO 0 21-(03) . We then proceed

almost exactly as does Scott (D. Scott [11], Theorem 3.2, p. 245),

so that the axioms D
31

D
4/

D
5
are justified. As in Theorem 15,

the normalization conditions D
1,

D
2

will allow us to construct

a function H (which exists on the basis of D
3

- D
5
) with the

desired properties (i) and (ii) in Thebrem 16. Q E. D.
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Vow if we put

6(21/ 12 24. oat 6224=0. < Pa. /221 > 4 < al (22/ a2 > (3.9)

we can easily prove the following theorem with the help of

Definition 7:

THEOREM 17 Let <: a, fp), , IL> be a FQQED-structure over

a FQCP-structure. Then the following formulas hold, when all

variables run over 113 :

(1) is an equivalence relation;

(2) CV ;

(3) Na -kg 13 4, ;

(4) 1/71/ P2 171 '2/ P2 ;
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(15) paip 4, fojp4=-4(1.& y -_,. P2 .12 lp, II

i - 2 4 /11 (22. ( P2 4.622 ;<=4; C/ (4 4. /31/ /22)
(16) P 19

(17)
( 1)1/ P2 =' (11/ t4 & P2 4' a 2) /P1 P2 -4.121 472 ;

(18)
( 1P1 r2 4 c21 a2 &

(19) ( ral P2 P3 --sk*'(22./ ti2 ei 3 & 172/P3 4'4/ (23)

PI f2/7)3x1; 1a. (12/Q3 ;

ii. P2/ 6 4 al 22/623

( fi/ P2 P3 -4' t21/ 62 (2-3 (-22/(e3 -4-P2/ r3) ;

(21) ( Pil p2 e3 A3. 22/a,3 & P2/ p3 a2 623) ..
Pi 0'92/ 6 4 al (92 I a3 ;

all 2 & ai/a2 -4 RI I4R2)Y11 1)24 gilg2;

(2o)

(22),

n n 1-1 , 1-1
(23) 7 11)- 4 FT Oi. & V. n( ii /TT Pi 4- cii /Trai).4

i-_,1 i i.2. - - j=0 j=0

n-1 n-1a 17(.2. -:., V / Tt P. wheren j n J 0j=0 j=0

No more than with Definition 6 can we hope to show that

H( try P2) = - E P(AB) 1 g
2
P (A/B)

AE pl.' BE p
2

(3.10)

without giving same further axioms to link -- with the probability

relation 4 on .
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It was Khinchin [40] who showed that the conditions

(a) H( Pi °2) - H( = H( tF'32( 4P2)

(b) H(g)) <H(6) if lel = 161-;

(c) H( PU = H(I) ;

imply the identity

H( P) = - P(A) log
2
P(A)

AeP

and therefore also the identity (3.10). In our case (a) is true

by definition, and (b) and (c) become valid by adding the following

two axioms:

D6 <f, o> < 6 , c > , if I PI = 16' I ;

D7 < u (f6), > < , > .

Naturally e must exist, otherwise the axiom 1)6 would be

vacuously true. Given that, Do - D7 imply the conditions (a), (b),

(c) for finite qualitative conditional entropy relations.

3.6. Qualitative Information Structures

The reader may be somewhat disappointed after reading the

previous section by the very general and rather weak nature of the

results on entropy structures. It should be emphasized again,

however, that we cannot expect simple results about fairly com-

plicated continuous functions in terms of relations on finite

domains.

127



In this section, unlike the earlier ones, we shall work with

infinite Boolean algebras; as we shall see, the results will be

somewhat stronger. We are able to give a definition of information

measure without any recourse to probabilistic notions.

The structure to be studied here is a Boolean algebra a

enriched by two binary relations IL and the relation IL

can be interpreted as follows:

A jj B Event A is independent of event B (A, B e a ) ,

and the -.Z0 is interpreted as before:

A 4"B Event A does not have more information than event B

(A, B e a) .

The novelty here is that we give axioms for and

et which, without recourse to probability theory, ensure the

existence of an information measure in the standard sense.

The need for a formalization of a notion of qualitative

independence to match the standard probabilistic notion has been

felt for a long time, but the author is not aware of any serious

attempts to solve this problem. In this section we shall try to

work out such a formalization. First, perhaps, we should turn

to the definition:

DEFINITION 8 Let a be a nonempty set, a nonempty family

of subsets of Q such that it is a Boolean algebra, and and

binary relations on a'
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Then the quadruple <a, &'6 is called a qualitative

information structure (QI-structure) if and

conditions are satisfied when all variables

1

12

I
3

4

5

6

5

8

9

10

11

112

I
13

0 J1 A ;

A ILB-.4>BIA;

A 1 B A

AILB&AILCAIBUC, if

a ;

A ize fo ;

ABv B 4- A ;

A B & B C A C ;

All.B&A.LB(Arti5vBAlft5);

A+Bov-AUC4.BUC, if CiA,B;

A4B4.4.ArlC-4-BrIC, if CIA, B &C-05 ;

A-4.-B&C4DAUC-4-BUD, if BiD;

A-40B&C4D-=4-ArlC-4BrID, if AEC &BID

only if the following

run over

IfI
14

A. L A. for i j 8c i y j < n, then

An+1 V 5

I. If A. IL A. for
15 1 j

VB3An4:1Vi

(A.LA SeB,ZA )
n 1 n+1 n+1 '

i j & 1, j < n, then

n
(Al A

n+1
8c An+1 ) .
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(1)

Remarks:

All axioms but the last two, which force a to be infinite,

are plausible enough. Axioms 114 and 115 could be replaced

by some kind of Archimedean axioms. Moreover, the reader may

find same relationship to Luce's extensive (measurement)

PiaLa.n.

(ii) The axioms can be divided into three classes: First, those

which point out the properties of j ; secondly, the axioms

for 4 ; and thirdly, the interacting axioms giving the

relationship between
IL

and There is no dolibt about

their consistency.

(iii) Instead of taking a Boolean algebra a we could consider

a complete complemented modular lattice, in which the relation

would become a new primitive notion. In this case our axioms

for and 4 come rather close to dimension theory of

continuous geometry.

It is easy to shaw that Definition 8 implies Theorem 8, if we

put A 4 B..t.B -4('A (A, B E .

For purposes of representation we shall need a couple of

notions which will be developed in the sequel.

Let < f/1 VC, > be a QI-structure. Then

([A]k : A e , where [A]4 = (B : A B) . For simplicity

we put [A] = [A]c . Now we define a couple of operations on

(a) [A] + [B] = [A, U B1] if Ai B1 and Ai et, A & B1 B

(b) n [A] = (n-1) [A] + [A] 1 0 [A] = [01 ;
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(c) [A] [B] = [A, n B1] , if Ai 1 B1 and

(d) [A]n = [A]n-1 [A] , [A]° = [f/] .

Axiams 1
12

and 1
13

will guarantee the correctness of the

above definitions, that is, that they do not depend on the particular

choice of representatives Al, Bl. The existence of the defined

terms is implied by 114 and 115. Weakening of the axioms 114

and 1
15

would allow us to define only partial operations +

n ( - ) ( -)
n

on5
C

r.4

We put, as might be expected,

[A] < [B] 4=t> B -4` A (Al B c a ) .

The reader can easily develop the algebra of the ordered

semiring IR = < a,/,41 , [0], [a], + , < > In par-.

ticular, he can show that the operations and + are com-

mutative, associative, monotonic, distributive, and the zero and

unit element act as usual. Obviously, theorems like

m [A] < n [A] m < n 1 provided [A] [P]

[A]n < [A] m.*4. n < m 1 provided [A] ;

(m+n) [A] = m [A] + n [A] ;

[A]
(m+n)

= [A] m [A]
n

are alsb true.

Our Representation Theorem for QI-structures is based on the existence

of a function p such that
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(1) [A] < [B] 441)([A]) < (1)([13])

( ) ( [95 =

(iii) cp( [a]) =

0

1 I

(iv) WA] + [13]) = WAl) C[B]) if A B ;

(v) (1)(CA] [B]) = (1)( [A]) (P([B]) if A 11. B

There are several ways of showing the existence of
(1) :g?

We prefer here to use the method of Dedekind cuts of rational nuMbers.

In fact, the sets c
B.=

f : m [I] < n [B]) and

c* = ( .1-11 [Ulm < [B]n) form a Dedekind cut for fixed U Ean
since

(a) m [U] < n [B] n [Bs] < m [U] and

< [B]n v [Br < [U]in by 17 *)

( b ) c & c < 2 andnBqBn q

E C* & 2 E C4E1-22 < E by transitivity.
n B q B n

*
(c) c

B
= 16 , defines 0 and c

B
= set of all rationals, defines + co .

The real number which is defined by the Dedekind cut cA (c; )

/// *
will be denoted by #cA lfcA) . We shall define two real-valued

functions on IR as follows:

* )
V denotes the logical connective 'exclusive or'
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(1) %Mil) = u 1

cpuffAl) = u

where

#cA

0 < u < 1 /

(2) cp/:( [U]) = v 1 where 1 <v< +031

cp:( [A]) = 1r4CA

In the following we shall amit the indices u and v in

functions p psand c: .

Using the consequences of axioms I - 1151 it is easy to show that

the conditions (i) (v) hold for cp and cp* . In fact/

(1)( [A]) < cg[B])4*-1>u #cA < u #cB> : m. < n. [A] ) c:

c: 11-1 m CU] < n [B] 3 4=. [A] < [B] . Similarly things
n

hold for cps* If AiBI then cp([A1) + cp( [B]) =

u #cA u #cB u (#cA
#cB) n #(cA cB)

u #cA U B
and similarly for

cp([An = cp([A U = cp([A]) + cp([0]) 1 since jA

Hence, p([0]) = 0 . Again, (1)*([0]) = cp*([A n 0]) =

= (pl.( [An cp*([0]) = 0 , since p i A In view of p[0] < cp( [an 1

we can normalize both cp and cps* by taking

and
cP({an crUan
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Naw the fact that p([A]) < p([B])4grp,([A]) <

implies the existence of a one-one mapping n : [0, 1]

such that p* = a p .

Since [A] ([B] + [C]) = [A] [B] + [A] [C] 1 we get

VW ([13) [C])) =V[A] [B]) + p([A] [C]) 1 and so also

T*([B] [C))) 11-1(e([A]) p*([B])) +

n.-1(e([AJ) 4 TN[C1)) c

For A A, a we get

71-1(e([131) + p*([C])) 11-1(e(DD)

But this is the Cauchy functional equation for T1-1 in the

real interval [0, 1] . Using the standard method of solution

1/ /
of linear functional equations, we get n

-
kp
*
( [A])) = a (p*([})

where a is a real positive constant. The normalization of p

and p* gives finally p*([A]) = p(Dj) for all [A] E

We can now prove

THEOREM 18 (Representation Theorem) Let < -4° , > be

a QI-structure. Then there exists a finitely additive probability

measure P on a such that < a P > is a probability

space, and

(1) A -+B 44. ( < 1(B) ;

(2) A fl B) + I(A) + I(B) ;

(3) I(A) = - log2P(A)

Proof: We put P(A) = p([A]) for A e Then from the

previous discussion of p it is easy to see that (1) - (3)

are satisfied.



Clearly all the axioms I
1

- 1
13

are necessary conditions

for the existence of the information measure I Axioms I
14

and
15

are not necessary. We leave open the problem of formulating

axiams both necessary and sufficient for the existence of the

measure I.

Aware of the relatively complicated necessary and sufficient

conditions for the existence of a probability ineasure in an infinite

Boolean algebra a 1. the author will not go here into further

details.

I(A) = - log2P(A) is called sometimes as self-information

of the event A. The next (slightly more general) notion is the

so-called conditional self-information of event Al given event B:

I(A/B) = - log2P(A/B) . A further generalization leads to the

conditional mutual information of events A and B, given event C;

p(AB/C)
VAL:B/c) = log2 p(A/e).1)(E/c)

Naturally, we would like to give representation theorems also

for these more complicated measures.

In this last case, our basic structure would be the set of

camplicated entities A:B/C (Al B, C E 15-4C) and two binary

relations ji and 4' on this set of entities. In fact, it would

be enough to consider the formulas Al:B1/C1 .4v A2:B2/C and

A/C li y
since the remainder can be defined as follows:
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;

A -4 B 4.4A:A B: B ;

A/B C/D A/B C: C/D

A .11. B 44.A/SZ BA where Al B, C, D E a .
Some of the properties of the qualitative conditional mutual

information relation 4' are analogous to those of the 3ualitative

self-information relation. For example,

C1/E1 4 - A2: C2/E D1/E1 B2: D2/E2) C1D1/E1 A2B2: c2D2/E2

if A /E B /E & C./E. 1 D./E. & A B./E C D./Ei 1 11 1 i a. I 1 i = 1, 2 .

We do not intend to develop further details here, because of

the rather complicated nature of these properties. Note that we

have several notions interacting here: conditional events, the

independence relation, and the mutual information relation. Fram

the point of view of algebraic measurement theory the problem is

to give measurability conditions for very complicated relations

defined on the above-mentioned complex entities.

4. APPLICATIONS TO PROBABILITY LOGIC, AUTOMATA THEORY, AND

MEASUREMENT STRUCTURES

4.1. Qualitative Probability Logic

In methodology of science, inductive logic, and in philosophy

generally, it is customary to consider the probability of statements

rather than the probability of events. But even in the field of
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applied probability theory we qnite often appear to speak of

probabilities of statements rather than of sets. For example,

we talk about the probability that the 'random variable t is

not greater than the random variable T ,' instead of taking the

probability of the set (0) E a : t(c) <: n(a)j . This case, indeed,

is nothing to worry about, since the appropriate translation from

statements into events is immediately dbvious. The main problem

comes in when we want to talk of the probability of a statement

containing quantifiers. The standard probability space A =

<a, LZ, P > takes care at best only of the countable cases,

so that the logical operations =3X 5 \Vx are often not adequately

represented by the a-operations in a ; especially, when x runs

over an uncountable domain. Consequently, the problem arises of

how to assign a reasonable prdbability to quantified statements.

The basic idea, following Scott and Krauss [20], is quite simple.

We turn the Boolean algebra a given in A5 5 into a 22T21912

Boolean algebra by taking the quotient e47,elp , modulo the

a-ideal of sets of measure zero. Then arbitrary Boolean

operations are admitted. In addition, P turns into a strictly

positive measure on a/ Therefore, if we assign homo-

morphically to every first-order formula an element of a/ Ap , no

trouble will arise from using any sort of quantification. This should

be clear enough. alt the trick is not so innocent: Since a/o.

satisfies the countable chain condition, all Boolean operations
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actually reduce to countable ones; therefore the quantified formulas

will get probabilities regardless of whether they are defined on

a countable domain. Clearly some big Boolean algebras may be needed.

But then we may not be able to guarantee the existence of a probability

measure: Probability with values in a non-Archimedian field still

may exist, but then we are faced with a problem of interpretation.

In the author's opinion, the problem can be solved by considering

a qualitative probability structure <S/1 a, > for which,

eventually, ..we will be prepared to give up the validity of the

representation theorem. In fact, the formula A4B for Al B e a

has a perfectly good meaning or content in the above-mentioned

fields, be it representable by a probability measure in the sense

of problem (P1) or not. In particular, can be afbitrarily big,

if needed. What matters now is only an appropriate way of assigning

Boolean elements to formulas.

For this purpose consider a first-order language 0C =

= < V, Fy Py yV )8e)=4). ) 404. 23 > y where V

denotes the set of variables x, y, z, v, w, F the set of

functors, P the set of predicates, and the remaining symbols

stand for logical connectives and quantifiers in the usual way.

Simplifying the problem, without losing generality, we shall con-

sider just one two-place functor T eF and one binary predicate

p e P We define recursively first-order formulas aver X
in the well-known way. If needed, we nay include among the logical

symbols also the identy predicate = . We shall introduce Boolean
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models as probabilistic intended interpretations of oe The aim

is here to replace the truth values of ordinary logic by values in

et; then a formula is valid if it has value a , and invalid if

it has value )6 . The various 'truth values' are ordered by the

qualitative probability relation of the qualitative probability

structure A = < g, tit, 4 > which will be held fixed throughout

this section.

A nonempty set .S together with a mapping = S X S --*

is called a Boolean set (N -set) if and only if for all a, b, c E S

(i)

(ii) [a E b -,b E a] = a ; *)

(iii) [a=bnb=c -)a=c] =g, where a=b = =(a,b) .

We could think of several mappings = on S and they would

yield different Boolean identity relations on S If there is no

danger of confusion we shall use S to refer to the structure

< S, E > 1 and SI Sl, S21 ... will be variables for Boolean

sets. Hence, roughly speaking, a Boolean set is just an ordinary

set in which the natural identity is considered in terms of a

Boolean-valued logic.

* )
If Al B E y then A -)B. denotes A U B There
should,be no confusion with the mapping f from A into B:

f : A --)B .
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If E denotes the strict equality = and a is a two-

element Boolean algebra, then < SI a > is equal to S .

A. mapping R S x S --+Re is called a Boolean 12.1..mir relation

(4k -relation) iff for all a, b, c, d e S

[(a acnbad) -4 (aRb -)cRd)] = a. )

where aRb = R(alb) .

It should be clear how one could define more general relations.

A Boolean relation R I defined on a Boolean set S forms

a Boolean relational structure (414% -strueture) < SI R >

A mapping f : S x S -,S is called a Boolean binary okeration

( A -operation) iff for all a, b, cl d E S

[(a acnbad) -)f(alb)af(cld)] = a

It is immediately clear how one gives a definition of Boolean

functions.

A Boolean set S , together with a Boolean relation R and a

Boolean operation f on it, defines a Boolean structure < SI R, f >

Now we are ready to interpret the language X in a Boolean

structure < SI RI f > and give a definition of the qualitative

probability formula 0
1
14 0

2
1 where 0 0

2
are..formulas of d:

We give values to variables x, y, z, of V in the

Boolean set S ; p will denote a Boolean operation f in S

and p will denote a Boolean relation R on S Having done

this, we get a possible Boolean model eY= < SI RI f > for ce
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If the values of x,y are X, YeS, then the

term p x y is f(sc,31) It is obvious how to

definition recursively to all terms.

*)
'Now the valuation 1 / of formulas of

into is defined recursively as follows:

(1) 1 pl I T1Ri2
11 2

I

c/
=

value of the

extend this

on C,

in particular, 1 T
1
= T I2 (

(ii) -1 0 ty, =

(iii) I
1
v

2
jet' = ] [ 0 I

te 2 et

(iv) [Vx 0 [ 0(a) I,
OT

if
cr

0(a) = [xla]

aeS

0 ;

where T T
2

denote terms, 0, 0
1

, 0
2

formulas of .42 , and

[xla]0 is a substitution operation in the metalanguage of

We can put

1 y 2

and interpret 01 402 as follows:

is not more probable than formula 02

Considering all possible valuations

formula 0
1

in the modele

for all cy°

we may define

and obtain a qualitative probability structure of first-order formulas

< 1:-, 4 > in which, hopefully, the mentioned methodological

*)
This ingenious notation is due to Scott and Krauss [20].
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problems of empirical sciences can be studied.

Sometimes we start with a first-order theory ..7 and take

the class of all its models Mr. Then clearly

(1) E ,r me} fl for all (Ye ria,

Note that in a qualitative probability structure of formylas

< IF , 4 > we are given a priori a fixed structure A =

= <: a, et, > ; and in the case of < F, azw > two

structures; A and P. The choice of cf is given by

empirical interpretation, but it is not clear, on the basis of

which criteria should we choose A
One way of answering this question would be to associate

with R a randam relation R* 1 that is, a mapping

R* : a x s) 1*) for which

\S/albeS [(1m aRleb] e a ]

The randam relation R* is a randam variable which takes as

possible values ordinary relations on S Now the randomization

may be dictated by the empirical interpretation. In particular,

we may be forced to take a special a 1 and a will be given

by the conditions of observation. The satlety of the events we

*)
If A is a set, then -ekA) denotes the set of sasets of A.
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can observe will motivate us to choose an appropriate algebra

from the lattice of algebras over S1 ordered by- the finer-than

relation: rt . Finally, the probability relation 4
1 2

is given by the random mechanism of R*. If the randomization

of R is not possible, we have to choose A subjectively.

If <a, ev, > is a qualitative conditional probability

structure, then we can define the qualitative conditional probability

relation on formulas, from as

0
1
/0

2
4 T

1
/T

2 10 I/10
2 1411111/IT211

If we proceed in the same way as above and take a semiordered

qualitative (conditional) probability structure, we can define

notions like acceptability, rejectability, and the like. If needed,

we can remove the condition that a be a Boolean algebra, and

consider a as a lattice.

We shall not develop any specific details of these notions

here.

4.2. Basic Notions of Qualitative Automata Theory

In this section an application of qualitative probability

structures to probabilistic automata theory will be presented.

Automata theory is considered as a part of abstract algebra.

Deterministic automata theory is a very well developed discipline,

whereas probabilistic automata theory is still at the beginning

stage. An excellent review of the sUbject can be found in

R. G. Bucharaev [59].

1.43



Probabilistic automata represent empirical discrete systems

in which statistical disturbances (noise) or uncertainties have

to be taken into account. It is assumed also that the system has

two channels: the output and transition channels.

From a formal point of view, a probabilistic automaton is

*)
a many-sorted structure ' < El 8, Z, H > 1 where 81 Z are

finite nonempty sets (the set of inputs, the set of outputs, and

the set of (internal) states) and H is a conditional probability

function assigning to each 'conditional event' (Ols')/(e0s)

(where 0 e 8, e e El and s, s' e Z) the probability that

the automaton transits to state s' and produces output 0, given

that the automaton is in state s with input e.

From a purely conceptual point of view, instead of taking H

to be a mapping as above, that is, H E x E x E), where

.gke x E) denotes the set of probabilistic distribution functions

over 8 x El we can consider H to be a more general sort of

mapping. In particular, we call the automaton < El 8, El H>

Boolean if H : E x E ---* a8 x E , where a is a Boolean

**)
algebra. ' Then H((0,5')/(e,$)) = the Boolean (truth) value of

the statement that the automaton transits to state s' and produces

output o, given that it is in state s with input e. In the Boolean

algebra tt we can have a qualitative probability relation 4

*)
' By a many-sorted structure we mean a structure which has

several different domains (universes).

**)' B
If A and B are sets, then A denotes the set of mappings
from B into A.



and therefore we can consider the qualitative probability formula

(011s1)/(e1ls1) 4 (025q)/(e2ls2) (Ow, 02 e
1/

e
2

e

s
1/ /

s
2/

s e E) with the obvious interpretation. Since we1 2

would not want to bother dbout the meaning of the algebra a

we shall proceed in a more straightforward way, namely, by replacing

the function H by a qualitative probability relation. For this

purpose, we have to consider input events (take just the elements

of _f(E)) and state" events (take the elements of ...e(E)). More

specifically,

if 0
1/ . 0

2
13(e), el/ e2 E S' S'

1/ 2

s
1/

s
2

E El then (011S1)/(e1ls1) 4 (021S)/(e2ls2) 4601*

the output event 0
1

and the state event S'
1

given

input el and state si are not more prObable than the

output event 02 and the state event SL given input e
2

and state s2 .

This is the intended interpretation which we shall deal with.

First comes the definition

(4.1)

DEFINITION 9 A many-sorted structure < El 81 El 4 > is

called a finite qualitative probabilistic automaton (NP-automaton)

if and only if the following conditions are satisfied for all

variables running over appropriate sets as explained in (4.1):

0
E, 81 and E are finite nonempty sets (input, output, and

state sets); and 4 is a binary relation on
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(z) X X Z where the formula generated by 4
is written as in (4.1);

M1 ("6)/(elYs1)-, (8,E)/(e2,s2) ;

M2 (0,0)/(e1,s1)4 (0,S')/(e2,s2) ;

1.13 (01,S1)/(e1,s1)=4 (02,S)/(e2,s2) V (02,V/(e2,s2) 4

mit Vi < n{(Ovsi)/(evsi) 4 (g1,si)V(et,s1)3

(Qt,S')/(e*,s*)4 (0
n
IS
n
)/(e

n
Is
n

if (0.,S.)^ / (e.,s.) =n n .

i < n

(Q1,S1)" / (etIst) .

i < n

We have mentioned many times that the characteristic function

occurring now in Mit, can always be eliminated. To be completely

clear, we put [(0,S)^/e1,s1](o,$) = 1 iff oE0 ticsES,

otherwise zero. After those experiences dbtained from manipulations

with probabilistic relational structures, we might suspect that

this definition is just the 'qualitative version' of the standard

definition of probabilistic attomaton. In fact, the following

theorem can be easily proved.

THEOREM 19 Let < E, e, Ey 14 > be a many-sorted structure,1111011,

described by axiom M in Definition 9. Then it is a FQP-automaton0

if and only if there isafunction H: Exz--409(exE) such

that < E, 8, E, H > is a probabilistic automaton (especially,

H((o,s')/(e,$)) is non-negative and E H((o,s')/(e,$)) = 1)
oe8
s'eE
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and (ollsi)/(evs1) 4 (02,q)/(e2,s2)4wH((o1,si)/(e1,s1) <

< H((o2ls)/(e2ls2)).

Taking H in the probabilistic automaton q: = ell El H>

to be a special function, we Obtain, amongst others, the following

classes of automata:

C is called a Mealy-autamaton iff H((ols')/(els) =

= H(o/(els)) . H(s1/(els)) .

C is called a Moore-autamaton iff H(o/(els,s')) = H(o/s')

(iii) C is called a probabilistic automaton with random output

and deterministic transition iff

H(s'/(els)) = 1 1 if :3f[5 l = f(els)] and zero otherwise.

(iv) C is called a probabilistic automaton with randam transition

and deterministic output iff

H(o/(els)) = 1 1 if --Af[o = f(els)] 1 and zero otherwise.

A special case of the Moore-automaton is the Rabin-automaton

< El El T, H > where T = (s : s & g(s) = 1) where g is

a mapping from E to 8 .

The qualitative version of these automata is quite obvious.

In the case of Mealy-automata we have to require that o/(els) j sl/(els);

and the appropriate axioms can be stated easily by using the results

of Section 2.6 on qualitative conditional probabilities. Similarly,

the Moore-automaton is specified by the requirement o/s jj (els)/s' .
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Notions like subautomaton, isomorphism and homomorphism of

automata, reduction of states, direct sum and tensor product of

automata, are quite easily defined. Since we are not going to

develop any specific theory about the properties and mutual rela-

tionships of those notions, we shall not give any further definitions.

The notion of the event x realized by qualitative probabilistic

automaton is also easy to define.

If somebody wants to study semiordered qualitative probabilistic

automata, he is welcome to do so. All obvious combinations of these

notions are hardly supported at the present time by any empirical

problem. On the other hand, from a theoretical point of view,

they represent a good source of mathematically interesting theories.

4.3. Probabilistic Measurement Structures

The notion of a relational structure is fundamental in most

current empirical theories. Various ordering structures furnish

the common idealization of a large number of mathematical, physical,

behavioral, and other scientific conceptual structures in which

the notion of a relation occurs. However, in numerous instances

in which these relational structures are applied, the situation

or the problem is rather over-idealized. This is evidently the

case, for example, in measurement. If the relations are determined

by experiment or observation, undoubtedly they must be supposed to

depend on chance. In repeated experiments or observations (under

fixed conditions) we do not get unvarying results, because of
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'noise,' an unavoidable phenomenon with statistical structure.

For instance, it is quite common to describe the measurement of

weight of a given set of objects using an equal-arm balance system

by a binary relational formula a R b (object a is less heavy that

object b). This nethod is completely correct if the weight-difference

of objects a and b is essentially greater than the friction in the

balance system and the statistical disturbance factors. But in

the case of precise measurement with relativay small weight-differences

the relation R would not serve as an adequate notion for the meas-

urement problem. In this case we cannot use any mcre the 'yes-no'

answers given by aRb or bRal for if we repeat the measurement

act several times, we may get different results contradicting each

other. The relation a R b would hold with certain probability,

approximated by the relative frequency of occurrences of a R b .

Therefore the relation R has to be replaced or interpreted as

a randam relation which takes as possible values the ordinary

relations. But then the appropriate order-homomorphism of this

(randam) measurement structure into the structure of reals must

be randam, too. In physics, clearly enough, classical quantities

have to be considered as random variables, if their magnitudes are

small and the molecular or other fluctuations are taken into account.

In econometrics or in psychology,"especially
in preference and

utility theory, it is a well-known fact that inconsistencies may

occur in a subject's preference ordering. The reason for this is

simply that we are unable to perceive all relevant characteristics



of the objects on which the preference is defined. Here again

the randam or probabilistic relation is the appropriate notion.

A Boolean relational structure < S, R > is called a qualitative

probabilistic relational structure over <: a, Pt, 4 > iff

there is a random relation R* on a corresponding to R ar

is the Boolean algebra over which < S, R > is defined, and 4

is a qualitative probability relation on a If we replace 4

by a probability measure P we get a (numerical) prdbabilistic

relational structure.

Ncte that qualitative probabilistic relational structures

are generalizations of ordinary relational structures. In fact,

all theorems and definitions of algebraic measurement structures

given, for example, in Suppes and Zinnes [58] have probdbilistic

counterparts. We shall take one example.

DEFINITION 10 A qualitative probabilistic binary relational

structure < S, R > over <: a, a, 4 > is called a qualitative

prdbabilistic semiorder (QPS-structure) if and only if the following

axioms are valid for all x, y, z, w S :

V
.1

1 xRx 1 'w ;

v
2

xRy & zRw (xRw v zRy) 1

v [ xBy & yRz (xRw v wRz)

If < S, R > is a QPS-structure, then

(1) 1 xRy & zRw 1 -4 I xRw v zRy 1 ;

(2) I xRy & yRz 1 4 xRw v wRz 1 ;
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(3) I xRy & yRz 1 4 I xRz 1 ;

(14-) I xRY 1 4 I Y'Rx 1

The proofs would be worked in Boolean logic and then V2 and

V3 would be applied. In facto the proof goes exactly the same way

as in ordinary logic, so that there is no need to repeat it here.

Even the representation theorem goes through, if we rewrite

its proof into Boolean terms:

TBEOREM 20 Let < S, R > be a finite qualitative probabilistic

structure over < S// a , -42., > . Then it is a QPS-structure

*)
if and only if there is a randctn function U : S --o Ra and

a random variable 71 > 0 such that for all x, y e S :

I xRy I 4.-. I U(x) > U(y) + ri I i... a . **)

The proof is analogous to the case of ordinary semiorder

structures. Note that I U(x) > U(y) + Ti I w (u) e a : U(x) >

>

As a consequence we get I xRy I ... I U(x) > U(y) + n I which

turns into equality in

Choice theory also gets its probabilistic version along these

lines. A probabilistic linear ordering structure < S, R > is

if)

**)

Ra denotes the set of random real variables.

If A, B e et I then A .4.- denotes AB U AB .
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represented by a probabilistic utility function U S Ra

where

1 xRY ^1 1 igx) < ti(Y) 1 forall x,yeS

The relationship between probabilistic and ordinary relational

structures can be given nicely by the folloliing ccennutative diagram:

< Ral < >

e 1 E

u I
< S, Re -> a < Re, < >

where for x, y S : ixRy 1 I U(x) < U(Y) 1 ;

xReY 4=). u(x) < u(y) , and EU(x) = u(x), EU(y) = u(y),

e(R) = Re

Roughly speaking, the ordinary relational structures are the

'averages' of probabilistic relational structures.

In ranking theory the well-known special sorts of probabilistic

transitivities (see J. Marschak [60]) assure, in the qualitative

version, the following form:

Let < S, R > be a qualitative probabilistic relational structure

over < a , > and let A ", A for some A e

Then R is called

(1) weakly transitive iff (A 4 I xRy & yRz 1 mi". A 4 I xRz 1) ;

(ii) moderately transitive iff (A 4 1 xRy & yRz

1 xRy & yRz I4IxBz 1 ;
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(iii ) strongly transitive iff (Ad 1 xRy & yEz 1

1 xRy v yRz I1xRz 1 ;

where xl z e S .

There are many interesting problems here which we cannot

discuss in this work.

5 . SUMMARY AND CONCLUSIONS

5-.1. Concluding Remarks

The main contribution of this work is stated in 10 definitions

and 20 theorems. We have been studying in detail and under various

conditions the properties of two binary relations -4 and

the first one on Boolean algebras, and the second one on lattices

of partitions. The results are quite general and simple, especially

in finite structures.

Our basic concern was to show that probability, entropy, and

information measures can be studied successfully in the spirit of

representational or algebraic measurement theory.

The method used here is based on the most general results

of mndern mathematics, which state a one-one correspondence among

relations, cones in vector spaces and the classes of positive

functionals.

The main problems, stated in Section 1.1, have been solved

in sufficient detail. In particular, we followed Scott in discussing
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the complete answer for (P1). Answers were dbtained for (P2) and

(P
3
) only in the finite case and in a special form.

As applications, w'e solved similar problems for entropy, informa-

tion, and automata.

As side problems, we discussed several conditional entities

like A/B, A/P, and el/6 in a set-theoretic framework. We

studied also the basic properties of the independence relation .11.

and quadratic measurement structures. Various applications in

logic, methodology of science, and measurement theory were indicated.

We have experienced the difficulties of measurement problems

in the nonlinear case. Yet, only the successful solution of such

cases is likely to persuade anyone to the importance of algebraic

measurement theory, a theory which at present is still in rather

a poor state.

As noted in Section 1.1, several people have tried to develop

semantic information theory. In the author's view, it can be very

well reduced to the standard information theory, because the set

of propositions, on which semantic information measures are defined,

forms, under certain rather ueak conditions, a Boolean algebra.

We do not think that there is much of learning about information

measures on propositions, before a satisfactory theory of probability

on first-order languages is developed. Probabilities of quantified

formulas may then give something new. Beyond that there is the

prospect of studying entropies in first-order theories and, perhaps,

of answering same of the methodological questions posed by empirical
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theories. But any such advances will have to be preceded by eluci-

dation of the structure of the independence relation on the set of

quantified formulas, the structure of the set of conditional formulas,

and so on. It may be that a purely qualitative approach would be

more fruitful to begin with. Concerning these problems, in this

study only the elementary facts have been stated.

The prdbability relation =!.- is usually associated with

subjectivist interpretations. The author has tried to shay that

the interpretation is unimportant; what matters real1y are the

measurement-theoretic properties of this relation. Because of

this, various semiorder versions of this relation have been also

studied.

5.2. flaested Areas for Future Work, and Open Problems

In this work several important problems have been left open,

and others emerged during the research.

In particular me have not given any answer to the problem of

uniqueness of probability, entropy, and information measures. In

problem (P ) we were unable to prove the multiplication law for

the conditional probability measure.

Our study is entirely algebraic; we have not tried to introduce

apy topological assumptions for the relations 1, 1 4 ; yet

it is reasonable to assume that the answers to problems

(P
3

) and (PO in the infinite case will lean heavily on the

topological properties of 4 in
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We have been studying the structures < Vt, > and

< SI, p > intrinsically; no doubt, mutual relationships

between these structures have also sane importance in illuminating

the empirical notions of a micro- and. macro-structure. Thinking

along these lines, we could consider the category of qualitative

probability structures and study their basic algebraic properties

externally.

The structures a, > <S, rite , .46 , jJ> y

and < fl, 13) 1 1 Jj> have not been studied enough. We do not

know, for instance, the necessary and sufficient conditions for

pairs < 4,1>, <-4°,1>, and < 4' 11. > in order to

be able to find appropriate probability, information, and entropy

measures, respectively.

Yet another question is to determine the conditions to be

imposed on the structures < MI 40 1 jj> and <fl, P >

to ensure that the representation by information I and. entropy H

have the more specific form:

Ak13 46,4 Li- 1(A) < 1(B) , 0< < +03, AlBert
< H( 132) 1 0 < 6 < + co

fly P2

This question is motivated by the problem that arises in algebraic

measurement theory when, because of errors, we have limited dis-

tinguishability.
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A further generalization of the problem occurs vben the error,

rather than being constant, is taken as a function 6 of the event A

or experiment P .

Another problem is to find those conditions that must be imposed

on < 0,a, =4 2 > or < p 2 .4. 2 I> for the probability

occurring in the information or entropy measure to have a specific.

distribution (Bernoulli, Binomial, Gaussian, for instance). In

this case we might hope that the measures will be unique up to same

reasonable group of transformations; moreover, the qualitative way

of proving theorems may be more straightforward.

We have not given too many details about quadratic (or, generall,y,

nonlinear) measurement structures in physics. Yet, there are

clear measurement problems connected with the representation of

such quantities for which the A-theorem holds.

Some of the questions of probability logic, probabilistic

automata theory, and probabilistic measurement theory appeared

to be important and we hardly could touch them.

The author is clearly aware of the rather introductory character

of this study to the vast field of open problems in the measurement-

theoretic approach to the notions of probability, information

theory, and methodology of science; he hopes that further results

will be forthcoming.
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